Massey Products in the Cohomology of the Moment-Angle Manifolds Corresponding to Pogorelov Polytopes
Matematičeskie zametki, Tome 105 (2019) no. 4, pp. 526-536.

Voir la notice de l'article provenant de la source Math-Net.Ru

Nontrivial Massey products in the cohomology of the moment-angle manifolds corresponding to polytopes in the Pogorelov class are constructed. This class includes the dodecahedron and all fullerenes, i.e., simple 3-polytopes with only 5- and 6-gonal faces. The existence of nontrivial Massey products implies that the spaces under consideration are not formal in the sense of rational homotopy theory.
Keywords: Massey product, Pogorelov polytope, fullerenes.
Mots-clés : moment-angle complex
@article{MZM_2019_105_4_a3,
     author = {E. G. Zhuravleva},
     title = {Massey {Products} in the {Cohomology} of the {Moment-Angle} {Manifolds} {Corresponding} to {Pogorelov} {Polytopes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {526--536},
     publisher = {mathdoc},
     volume = {105},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a3/}
}
TY  - JOUR
AU  - E. G. Zhuravleva
TI  - Massey Products in the Cohomology of the Moment-Angle Manifolds Corresponding to Pogorelov Polytopes
JO  - Matematičeskie zametki
PY  - 2019
SP  - 526
EP  - 536
VL  - 105
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a3/
LA  - ru
ID  - MZM_2019_105_4_a3
ER  - 
%0 Journal Article
%A E. G. Zhuravleva
%T Massey Products in the Cohomology of the Moment-Angle Manifolds Corresponding to Pogorelov Polytopes
%J Matematičeskie zametki
%D 2019
%P 526-536
%V 105
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a3/
%G ru
%F MZM_2019_105_4_a3
E. G. Zhuravleva. Massey Products in the Cohomology of the Moment-Angle Manifolds Corresponding to Pogorelov Polytopes. Matematičeskie zametki, Tome 105 (2019) no. 4, pp. 526-536. http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a3/

[1] V. M. Buchstaber, T. E. Panov, Toric Topology, Math. Surveys Monogr., 204, Amer. Math. Soc., Providence, RI, 2015 | MR | Zbl

[2] I. V. Baskakov, “Troinye proizvedeniya Massi v kogomologiyakh moment-ugol kompleksov”, UMN, 58:5 (353) (2003), 199–200 | DOI | MR | Zbl

[3] I. Yu. Limonchenko, “Proizvedeniya Massi v kogomologiyakh moment-ugol-mnogoobrazii 2-usechennykh kubov”, UMN, 71:2 (428) (2016), 207–208 | DOI | MR | Zbl

[4] A. V. Pogorelov, “O pravilnom razbienii prostranstva Lobachevskogo”, Matem. zametki, 1:1 (1967), 3–8 | MR | Zbl

[5] E. M. Andreev, “O vypuklykh mnogogrannikakh v prostranstvakh Lobachevskogo”, Matem. sb., 81 (123):3 (1970), 445–478 | MR | Zbl

[6] V. M. Bukhshtaber, N. Yu. Erokhovets, M. Masuda, T. E. Panov, S. Pak, “Kogomologicheskaya zhestkost mnogoobrazii, zadavaemykh trekhmernymi mnogogrannikami”, UMN, 72:2 (434) (2017), 3–66 | DOI | MR

[7] A. Yu. Vesnin, “Trekhmernye giperbolicheskie mnogoobraziya tipa Lebellya”, Sib. matem. zhurn., 28:5 (1987), 50–53 | MR

[8] V. M. Buchstaber, N. Yu. Erokhovets, “Fullerenes, polytopes and toric topology”, Combinatorial and Toric Homotopy, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 35, World Sci. Publ., Hackensack, NJ, 2017, 67–178 | MR

[9] G. Denham, A. I. Suciu, “Moment-angle complexes, monomial ideals, and Massey products”, Pure Appl. Math. Q., 3:1, Special Issue: In honor of R. D. MacPherson. Part 3 (2007), 25–60 | DOI | MR | Zbl