Characterization of Locally Finite Simple Groups of Type~$G_2$ over Fields of Odd Characteristics in the Class of Periodic Groups
Matematičeskie zametki, Tome 105 (2019) no. 4, pp. 519-525

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that a periodic group is locally finite, given that each of its finite subgroups lies in a subgroup isomorphic to a finite simple group $G_2$ of Lie type over a field of odd characteristic.
Keywords: periodic group, locally finite group, group of Lie type
Mots-clés : saturation.
@article{MZM_2019_105_4_a2,
     author = {X. Zhu and D. V. Lytkina and V. D. Mazurov},
     title = {Characterization of {Locally} {Finite} {Simple} {Groups} of {Type~}$G_2$ over {Fields} of {Odd} {Characteristics} in the {Class} of {Periodic} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {519--525},
     publisher = {mathdoc},
     volume = {105},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a2/}
}
TY  - JOUR
AU  - X. Zhu
AU  - D. V. Lytkina
AU  - V. D. Mazurov
TI  - Characterization of Locally Finite Simple Groups of Type~$G_2$ over Fields of Odd Characteristics in the Class of Periodic Groups
JO  - Matematičeskie zametki
PY  - 2019
SP  - 519
EP  - 525
VL  - 105
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a2/
LA  - ru
ID  - MZM_2019_105_4_a2
ER  - 
%0 Journal Article
%A X. Zhu
%A D. V. Lytkina
%A V. D. Mazurov
%T Characterization of Locally Finite Simple Groups of Type~$G_2$ over Fields of Odd Characteristics in the Class of Periodic Groups
%J Matematičeskie zametki
%D 2019
%P 519-525
%V 105
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a2/
%G ru
%F MZM_2019_105_4_a2
X. Zhu; D. V. Lytkina; V. D. Mazurov. Characterization of Locally Finite Simple Groups of Type~$G_2$ over Fields of Odd Characteristics in the Class of Periodic Groups. Matematičeskie zametki, Tome 105 (2019) no. 4, pp. 519-525. http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a2/