On the Spectral Characteristics of Non-Self-Adjoint Fourth-Order Operators with Matrix Coefficients
Matematičeskie zametki, Tome 105 (2019) no. 4, pp. 637-642.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: fourth-order differential operator, asymptotic formulas for eigenvalues
Mots-clés : matrix coefficients.
@article{MZM_2019_105_4_a13,
     author = {D. M. Polyakov},
     title = {On the {Spectral} {Characteristics} of {Non-Self-Adjoint} {Fourth-Order} {Operators} with {Matrix} {Coefficients}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {637--642},
     publisher = {mathdoc},
     volume = {105},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a13/}
}
TY  - JOUR
AU  - D. M. Polyakov
TI  - On the Spectral Characteristics of Non-Self-Adjoint Fourth-Order Operators with Matrix Coefficients
JO  - Matematičeskie zametki
PY  - 2019
SP  - 637
EP  - 642
VL  - 105
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a13/
LA  - ru
ID  - MZM_2019_105_4_a13
ER  - 
%0 Journal Article
%A D. M. Polyakov
%T On the Spectral Characteristics of Non-Self-Adjoint Fourth-Order Operators with Matrix Coefficients
%J Matematičeskie zametki
%D 2019
%P 637-642
%V 105
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a13/
%G ru
%F MZM_2019_105_4_a13
D. M. Polyakov. On the Spectral Characteristics of Non-Self-Adjoint Fourth-Order Operators with Matrix Coefficients. Matematičeskie zametki, Tome 105 (2019) no. 4, pp. 637-642. http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a13/

[1] G. D. Birkhoff, R. E. Langer, Proc. Amer. Acad., 58:2 (1923), 51–128 | DOI

[2] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl

[3] O. A. Veliev, Abstr. Appl. Anal., 2009, 934905 | MR | Zbl

[4] O. A. Veliev, Bound. Value Probl., 2008, 628973 | MR | Zbl

[5] A. A. Shkalikov, Tr. sem. im. I. G. Petrovskogo, 9 (1983), 140–179

[6] A. A. Shkalikov, O bazisnosti Rissa sobstvennykh i prisoedinennykh funktsii obyknovennykh differentsialnykh operatorov v prostranstve vektor-funktsii, Izd-vo Mosk. un-ta, M., 1984

[7] O. A. Veliev, Matem. zametki, 81:4 (2007), 496–506 | DOI | MR | Zbl

[8] N. B. Uskova, Ufimsk. matem. zhurn., 7:3 (2015), 88–99

[9] A. G. Baskakov, Sib. matem. zhurn., 24:1 (1983), 21–39 | MR

[10] A. G. Baskakov, D. M. Polyakov, Matem. sb., 208:1 (2017), 3–47 | DOI | MR | Zbl

[11] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR | Zbl

[12] D. M. Polyakov, Algebra i analiz, 27:5 (2015), 117–152 | MR

[13] A. V. Badanin, E. L. Korotyaev, Algebra i analiz, 22:5 (2010), 1–48 | MR | Zbl

[14] A. Badanin, E. Korotyaev, J. Math. Anal. Appl., 417:2 (2014), 804–818 | DOI | MR | Zbl

[15] O. A. Veliev, Israel J. Math., 176 (2010), 195–207 | DOI | MR | Zbl