Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_105_4_a11, author = {K. V. Sidorova (Gagelgans) and A. A. Shlapunov}, title = {On the {Closure} of {Smooth} {Compactly} {Supported} {Functions} in {Weighted} {H\"older} {Spaces}}, journal = {Matemati\v{c}eskie zametki}, pages = {616--631}, publisher = {mathdoc}, volume = {105}, number = {4}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a11/} }
TY - JOUR AU - K. V. Sidorova (Gagelgans) AU - A. A. Shlapunov TI - On the Closure of Smooth Compactly Supported Functions in Weighted H\"older Spaces JO - Matematičeskie zametki PY - 2019 SP - 616 EP - 631 VL - 105 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a11/ LA - ru ID - MZM_2019_105_4_a11 ER -
%0 Journal Article %A K. V. Sidorova (Gagelgans) %A A. A. Shlapunov %T On the Closure of Smooth Compactly Supported Functions in Weighted H\"older Spaces %J Matematičeskie zametki %D 2019 %P 616-631 %V 105 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a11/ %G ru %F MZM_2019_105_4_a11
K. V. Sidorova (Gagelgans); A. A. Shlapunov. On the Closure of Smooth Compactly Supported Functions in Weighted H\"older Spaces. Matematičeskie zametki, Tome 105 (2019) no. 4, pp. 616-631. http://geodesic.mathdoc.fr/item/MZM_2019_105_4_a11/
[1] N. M. Gunther, La théorie du potentiel et ses applications aux problémes fondamentaux de la physique mathématique, Gauthier-Villars, Paris, 1934 | Zbl
[2] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983 | MR | Zbl
[3] O. A. Ladyzhenskaya, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1973 | MR | Zbl
[4] S. Krantz, “Intrinsic Lipschitz classes on manifolds with applications to complex function theory and estimates for the $\overline \partial$ and $\overline \partial_b$ equations”, Manuscripta Math., 24:4 (1978), 351–378 | DOI | MR | Zbl
[5] R. McOwen, “Behavior of the Laplacian on weighted Sobolev spaces”, Comm. Pure Appl. Math., 32:6 (1979), 783–795 | DOI | MR | Zbl
[6] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR | Zbl
[7] V. Mazya, J. Rossmann, “Schauder estimates for solutions to boundary value problems for second order elliptic systems in polyhedral domains”, Appl. Anal., 83:3 (2004), 271–308 | DOI | MR | Zbl
[8] V. A. Kondratev, “Kraevye zadachi dlya parabolicheskikh uravnenii v zamknutykh oblastyakh”, Tr. MMO, 15, Izd-vo Mosk. un-ta, M., 1966, 400–451 | MR | Zbl
[9] L. Hörmander, The Analysis of Linear Partial Differential Operators. I. Distribution Theory and Fourier Analysis, Springer-Verlag, Berlin, 1983 | MR | Zbl
[10] N. N. Tarkhanov, Metod parametriksa v teorii differentsialnykh kompleksov, Nauka, Novosibirsk, 1990 | MR
[11] T. Behrndt, “On the Cauchy problem for the heat equation on Riemannian manifolds with conical singularities”, Q. J. Math., 64:4 (2011), 981–1007 | DOI | MR
[12] L. Nirenberg, H. Walker, “The null spaces of elliptic partial differential operators in $\mathbb R^n$”, J. Math. Anal. Appl., 42 (1973), 271–301 | DOI | MR | Zbl
[13] A. A. Shlapunov, “O zadache Koshi dlya uravneniya Laplasa”, Sib. matem. zhurn., 33:3 (1992), 205–215 | Zbl