On Groups with an Isolated $2$-Subgroup
Matematičeskie zametki, Tome 105 (2019) no. 3, pp. 428-432.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, sufficient conditions for a group with an isolated $2$-subgroup to be a Frobenius group are found.
Keywords: isolated subgroup, $2$-subgroup, finite involution, perfect involution.
Mots-clés : Frobenius group
@article{MZM_2019_105_3_a9,
     author = {A. I. Sozutov and B. E. Durakov},
     title = {On {Groups} with an {Isolated} $2${-Subgroup}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {428--432},
     publisher = {mathdoc},
     volume = {105},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a9/}
}
TY  - JOUR
AU  - A. I. Sozutov
AU  - B. E. Durakov
TI  - On Groups with an Isolated $2$-Subgroup
JO  - Matematičeskie zametki
PY  - 2019
SP  - 428
EP  - 432
VL  - 105
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a9/
LA  - ru
ID  - MZM_2019_105_3_a9
ER  - 
%0 Journal Article
%A A. I. Sozutov
%A B. E. Durakov
%T On Groups with an Isolated $2$-Subgroup
%J Matematičeskie zametki
%D 2019
%P 428-432
%V 105
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a9/
%G ru
%F MZM_2019_105_3_a9
A. I. Sozutov; B. E. Durakov. On Groups with an Isolated $2$-Subgroup. Matematičeskie zametki, Tome 105 (2019) no. 3, pp. 428-432. http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a9/

[1] A. G. Kurosh, Teoriya grupp, Nauka, M., 1967 | MR | Zbl

[2] A. I. Starostin, “O gruppakh Frobeniusa”, Ukr. matem. zhurn., 23:5 (1971), 629–639 | MR | Zbl

[3] A. I. Sozutov, V. P. Shunkov, “Ob odnom obobschenii teoremy Frobeniusa na beskonechnye gruppy”, Matem. sb., 100 (142):4 (8) (1976), 495–506 | MR | Zbl

[4] V. P. Shunkov, “O nekotorom obobschenii teoremy Frobeniusa na periodicheskie gruppy”, Algebra i logika, 6:3 (1967), 113–124 | MR

[5] V. P. Shunkov, “O periodicheskikh gruppakh s pochti regulyarnoi involyutsiei”, Algebra i logika, 11:4 (1972), 470–493 | MR

[6] V. V. Belyaev, “Gruppy s pochti regulyarnoi involyutsiei”, Algebra i logika, 26:5 (1987), 531–535 | MR

[7] V. P. Shunkov, “Gruppy s konechno vlozhennoi involyutsiei”, Algebra i logika, 29:1 (1990), 102–123 | MR | Zbl

[8] A. I. Sozutov, “O gruppakh s pochti regulyarnoi involyutsiei”, Algebra i logika, 46:3 (2007), 360–368 | MR | Zbl

[9] N. M. Suchkov, “O konechnosti nekotorykh tochno dvazhdy tranzitivnykh grupp”, Algebra i logika, 40:3 (2001), 344–351 | MR | Zbl

[10] A. I. Sozutov, “O gruppakh s kvazitsiklicheskim tsentralizatorom konechnoi involyutsii”, Sib. matem. zhurn., 57:5 (2016), 1127–1130 | DOI | Zbl

[11] Kourovskaya tetrad. Nereshennye voprosy teorii grupp, 15-e izd., Novosibirskii gos. un-t, Novosibirsk, 2002 | MR

[12] Yu. M. Gorchakov, “O beskonechnykh gruppakh Frobeniusa”, Algebra i logika, 4:1 (1965), 15–29 | MR | Zbl

[13] A. I. Sozutov, N. M. Suchkov, N. G. Suchkova, Beskonechnye gruppy s involyutsiyami, Sibirskii fed. un-t, Krasnoyarsk, 2011

[14] A. I. Sozutov, “O nekotorykh beskonechnykh gruppakh s silno vlozhennoi podgruppoi”, Algebra i logika, 39:5 (2000), 602–617 | MR

[15] N. Ito, “Über das Product von zwei abelschen Gruppen”, Math. Z., 62:4 (1955), 400–401 | DOI | MR | Zbl

[16] B. Amberg, Y. Sysak, On Products of Groups with Abelian Subgroups of Small Index, 2016, arXiv: math.GR/1611.10093v1 | Zbl