Methods for solving ill-posed extremum problems with optimal and extra-optimal quality
Matematičeskie zametki, Tome 105 (2019) no. 3, pp. 406-420.

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of the quality of approximate solutions of ill-posed extremum problems is introduced and a posteriori quality estimates for various solution methods are studied. Examples of quality functionals are given, which can be used to solve practical extremum problems. New concepts of optimal, optimal in order and extra-optimal quality of the method for solving the extremum problem are determined. The theory of stable methods for solving extremum problems (regularizing algorithms) with optimal order and extra optimal quality is developed, in which, in particular, the property of consistency of the evaluation function of quality is studied. Examples of regularizing algorithms with extra-optimal quality of solutions for extremal problems are given.
Keywords: ill-posed extremum problems, regularizing algorithms, quality of approximate solution, a posteriori estimate of quality, regularizing algorithm of extra-optimal quality.
@article{MZM_2019_105_3_a7,
     author = {A. S. Leonov},
     title = {Methods for solving ill-posed extremum problems with optimal and extra-optimal quality},
     journal = {Matemati\v{c}eskie zametki},
     pages = {406--420},
     publisher = {mathdoc},
     volume = {105},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a7/}
}
TY  - JOUR
AU  - A. S. Leonov
TI  - Methods for solving ill-posed extremum problems with optimal and extra-optimal quality
JO  - Matematičeskie zametki
PY  - 2019
SP  - 406
EP  - 420
VL  - 105
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a7/
LA  - ru
ID  - MZM_2019_105_3_a7
ER  - 
%0 Journal Article
%A A. S. Leonov
%T Methods for solving ill-posed extremum problems with optimal and extra-optimal quality
%J Matematičeskie zametki
%D 2019
%P 406-420
%V 105
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a7/
%G ru
%F MZM_2019_105_3_a7
A. S. Leonov. Methods for solving ill-posed extremum problems with optimal and extra-optimal quality. Matematičeskie zametki, Tome 105 (2019) no. 3, pp. 406-420. http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a7/

[1] A. N. Tikhonov, V. Ya. Arsenin, Metody resheniya nekorrektnykh zadach, Nauka, M., 1974 | MR | Zbl

[2] A. N. Tikhonov, A. S. Leonov, A. G. Yagola, Nelineinye nekorrektnye zadachi, Nauka, M., 1995 | MR

[3] V. A. Morozov, “O vychislenii nizhnikh granei funktsionalov po priblizhennoi informatsii”, Zh. vychisl. matem. i matem. fiz., 13:4 (1973), 1045–1049 | MR | Zbl

[4] A. N. Tikhonov, F. P. Vasilev, “Metody resheniya nekorrektnykh ekstremalnykh zadach”, Mathematical Models and Numerical Methods, Banach Center Publ., 3, PWN, Warsaw, 1978, 297–342 | MR

[5] F. P. Vasilev, Metody resheniya ekstremalnykh zadach. Zadachi minimizatsii v funktsionalnykh prostranstvakh, regulyarizatsiya, approksimatsiya, Nauka, M., 1981 | MR

[6] O. A. Liskovets, Variatsionnye metody resheniya neustoichivykh zadach, Nauka i tekhnika, Minsk, 1981 | MR

[7] A. S. Leonov, “O primenenii obobschennogo printsipa nevyazki dlya resheniya nekorrektnykh ekstremalnykh zadach”, Dokl. AN SSSR, 262:6 (1982), 1306–1310 | MR | Zbl

[8] M. Yu. Kokurin, “Source conditions and accuracy estimates in Tikhonov's scheme of solving ill-posed nonconvex optimization problems”, J. Inverse Ill-Posed Probl., 26:4 (2018), 463–475 | DOI | MR | Zbl

[9] M. Yu. Kokurin, “Neobkhodimye i dostatochnye usloviya stepennoi skhodimosti priblizhenii v skheme Tikhonova dlya resheniya nekorrektnykh ekstremalnykh zadach”, Izv. vuzov. Matem., 2017, no. 6, 60–69 | Zbl

[10] V. K. Ivanov, V. V. Vasin, V. P. Tanana, Teoriya lineinykh nekorrektnykh zadach i ee prilozheniya, Nauka, M., 1978 | MR | Zbl

[11] V. P. Tanana, Metody resheniya operatornykh uravnenii, Nauka, M., 1981 | MR

[12] G. M. Vainikko, Metody resheniya lineinykh nekorrektno postavlennykh zadach v gilbertovykh prostranstvakh, Izd-vo TGU, Tartu, 1982 | MR

[13] V. A. Morozov, Regulyarnye metody resheniya nekorrektno postavlennykh zadach, Nauka, M., 1987 | MR

[14] A. B. Bakushinskii, M. Yu. Kokurin, Algoritmicheskii analiz neregulyarnykh operatornykh uravnenii, Lenand, M., 2012

[15] H. W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems, Kluwer Acad. Publ., Dordrecht, 1996 | MR | Zbl

[16] A. S. Leonov, Reshenie nekorrektno postavlennykh obratnykh zadach. Ocherk teorii, prakticheskie algoritmy i demonstratsii v MATLAB, Librokom, M., 2009

[17] V. A. Vinokurov, Yu. L. Gaponenko, “Aposteriornye otsenki resheniya nekorrektnykh obratnykh zadach”, Dokl. AN SSSR, 263:2 (1982), 277–280 | MR | Zbl

[18] K. Yu. Dorofeev, V. N. Titarenko, A. G. Yagola, “Algoritmy postroeniya aposteriornykh pogreshnostei resheniya dlya nekorrektnykh zadach”, Zh. vychisl. matem. i matem. fiz., 43:1 (2003), 12–25 | MR | Zbl

[19] A. G. Yagola, N. N. Nikolaeva, V. N. Titarenko, “Otsenka pogreshnosti resheniya uravneniya Abelya na mnozhestvakh monotonnykh i vypuklykh funktsii”, Sib. zhurn. vychisl. matem., 6:2 (2003), 171–180 | Zbl

[20] A. B. Bakushinskii, “Aposteriornye otsenki tochnosti dlya priblizhennykh reshenii neregulyarnykh operatornykh uravnenii”, Dokl. AN, 437:4 (2011), 439–440 | MR

[21] A. B. Bakushinsky, A. Smirnova, H. Liu, “A posteriori error analysis for unstable models”, J. Inverse Ill-Posed Probl., 20:4 (2012), 411–428 | MR | Zbl

[22] A. B. Bakushinskii, A. S. Leonov, “Novye aposteriornye otsenki pogreshnosti priblizhennykh reshenii neregulyarnykh operatornykh uravnenii”, Vych. met. programmirovanie, 15:2 (2014), 359–369

[23] A. S. Leonov, “Aposteriornye otsenki tochnosti resheniya nekorrektno postavlennykh obratnykh zadach i ekstraoptimalnye regulyarizuyuschie algoritmy ikh resheniya”, Sib. zhurn. vychisl. matem., 15:1 (2012), 83–100 | Zbl

[24] A. S. Leonov, “Extra-optimal methods for solving ill-posed problems”, J. Inverse Ill-Posed Probl., 20:5-6 (2012), 637–665 | MR | Zbl

[25] A. S. Leonov, “Potochechno ekstraoptimalnye regulyarizuyuschie algoritmy”, Vych. met. programmirovanie, 14:2 (2013), 215–228

[26] A. S. Leonov, “Regulyarizuyuschie algoritmy s optimalnym i ekstraoptimalnym kachestvom”, Sib. zhurn. vychisl. matem., 19:4 (2016), 371–383 | DOI | MR | Zbl

[27] E. Giusti, Minimal Surfaces and Functions of Bounded Variation, Birkhäuser Verlag, Basel, 1984 | MR | Zbl

[28] S. M. Nikolskii, Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1969 | MR | Zbl

[29] S. J. Wernecke, L. R. D'Addario, “Maximum entropy image reconstruction”, IEEE Trans. Comput., C-26:4 (1977), 351–364 | DOI

[30] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR | Zbl