On Intersections of Abelian and Nilpotent Subgroups in Finite Groups.~II
Matematičeskie zametki, Tome 105 (2019) no. 3, pp. 383-394.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a finite group, and let $A$ and $B$ be, respectively, an Abelian and a nilpotent subgroup in $G$. In the present paper, we complete the proof of the theorem claiming that there is an element $g$ of $G$ such that the intersection of $A$ with the subgroup conjugate to $B$ by $g$ is contained in the Fitting subgroup of $G$.
Keywords: finite group, Abelian subgroup, nilpotent subgroup, intersection of subgroups, Fitting subgroup.
@article{MZM_2019_105_3_a5,
     author = {V. I. Zenkov},
     title = {On {Intersections} of {Abelian} and {Nilpotent} {Subgroups} in {Finite} {Groups.~II}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {383--394},
     publisher = {mathdoc},
     volume = {105},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a5/}
}
TY  - JOUR
AU  - V. I. Zenkov
TI  - On Intersections of Abelian and Nilpotent Subgroups in Finite Groups.~II
JO  - Matematičeskie zametki
PY  - 2019
SP  - 383
EP  - 394
VL  - 105
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a5/
LA  - ru
ID  - MZM_2019_105_3_a5
ER  - 
%0 Journal Article
%A V. I. Zenkov
%T On Intersections of Abelian and Nilpotent Subgroups in Finite Groups.~II
%J Matematičeskie zametki
%D 2019
%P 383-394
%V 105
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a5/
%G ru
%F MZM_2019_105_3_a5
V. I. Zenkov. On Intersections of Abelian and Nilpotent Subgroups in Finite Groups.~II. Matematičeskie zametki, Tome 105 (2019) no. 3, pp. 383-394. http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a5/

[1] V. I. Zenkov, “Peresecheniya abelevykh podgrupp v konechnykh gruppakh”, Matem. zametki, 56:2 (1994), 150–152 | MR | Zbl

[2] I. M. Isaacs, Finite Group Theory, Amer. Math. Soc., Providence, RI, 2008 | MR | Zbl

[3] I. M. Isaacs, “Abelian point stabilizers in transitive permutation groups”, Proc. Amer. Math. Soc., 130:7 (2002), 1923–1925 | DOI | MR | Zbl

[4] A. R. Jamali, M. Viseh, “On nilpotent subgroups containing non-trivial normal subgroups”, J. Group Theory, 13:3 (2010), 411–416 | MR | Zbl

[5] V. I. Zenkov, “O peresecheniyakh abelevykh i nilpotentnykh podgrupp v konechnykh gruppakh. I”, Tr. IMM UrO RAN, 21, no. 3, 2015, 128–131 | MR

[6] D. Gorenstein, Finite Simple Groups. An Introduction to Their Classification, Plenum Publ. Corp., New York, 1982 | MR | Zbl

[7] V. D. Mazurov, V. I. Zenkov, “O peresechenii silovskikh podgrupp v konechnykh gruppakh”, Algebra i logika, 35:4 (1996), 424–432 | MR | Zbl

[8] V. I. Zenkov, “Peresecheniya nilpotentnykh podgrupp v konechnykh gruppakh”, Fundament. i prikl. matem., 2:1 (1996), 1–92 | MR | Zbl

[9] D. Gorenstein, R. Lyons, R. Solomon, The Classification of the Finite Simple Groups, Amer. Math. Soc., Providence, RI, 1994 | MR | Zbl

[10] J. N. Convay, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of Finite Groups, Clarendon Press, Oxford, 1985 | MR

[11] M. Aschbacher, G. Seitz, “Involutions in Shevalley groups over fields of even order”, Nagoya Math. J., 63 (1976), 1–91 | DOI | MR | Zbl

[12] D. Gorenstein, R. Lyons, The Local Structure of Finite Groups of Characteristic 2-Type, Mem. Amer. Math. Soc., 42, no. 276, Amer. Math. Soc., Providence, RI, 1983 | MR

[13] K. Gomi, “Maximal $p$-local subgroups of $S_n$ and $A_n$”, J. Fac. Sci. Univ. Tokyo Sect. IA Math., 19:2 (1972), 215–229 | MR | Zbl

[14] V. I. Zenkov, Ya. N. Nuzhin, “O peresecheniyakh primarnykh podgrupp nechetnogo poryadka v pochti prostykh gruppakh”, Fundament. i prikl. matem., 19:6 (2014), 115–123 | MR

[15] V. I. Zenkov, A. I. Makosii, “O peresecheniyakh silovskikh $2$-podgrupp v konechnykh gruppakh, I”, Vladikavk. matem. zhurn., 11:4 (2009), 16–21 | MR | Zbl

[16] V. I. Zenkov, “O peresecheniyakh dvukh nilpotentnykh podgrupp v konechnykh gruppakh s tsokolem $L_2(q)$”, Sib. matem. zhurn., 57:6 (2016), 1280–1290 | DOI | Zbl