On Intersections of Abelian and Nilpotent Subgroups in Finite Groups.~II
Matematičeskie zametki, Tome 105 (2019) no. 3, pp. 383-394
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $G$ be a finite group, and let $A$ and $B$ be, respectively, an Abelian and a nilpotent subgroup in $G$. In the present paper, we complete the proof of the theorem claiming that there is an element $g$ of $G$ such that the intersection of $A$ with the subgroup conjugate to $B$ by $g$ is contained in the Fitting subgroup of $G$.
Keywords:
finite group, Abelian subgroup, nilpotent subgroup, intersection of subgroups, Fitting subgroup.
@article{MZM_2019_105_3_a5,
author = {V. I. Zenkov},
title = {On {Intersections} of {Abelian} and {Nilpotent} {Subgroups} in {Finite} {Groups.~II}},
journal = {Matemati\v{c}eskie zametki},
pages = {383--394},
publisher = {mathdoc},
volume = {105},
number = {3},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a5/}
}
V. I. Zenkov. On Intersections of Abelian and Nilpotent Subgroups in Finite Groups.~II. Matematičeskie zametki, Tome 105 (2019) no. 3, pp. 383-394. http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a5/