The Bombieri Problem for Bounded Univalent Functions
Matematičeskie zametki, Tome 105 (2019) no. 3, pp. 364-374.

Voir la notice de l'article provenant de la source Math-Net.Ru

Bombieri proposed to describe the structure of the sets of values of the initial coefficients of normalized conformal mappings of the disk in a neighborhood of the corner point corresponding to the Koebe function. The Bombieri numbers characterize the limit position of the support hyperplane passing through a critical corner point. In this paper, the Bombieri problem is studied for the class of bounded normalized conformal mappings of the disk, where the role of the Koebe function is played by the Pick function. The Bombieri numbers for a pair of two nontrivial initial coefficients are calculated.
Keywords: univalent function, Bombieri number, Koebe function, Pick function.
@article{MZM_2019_105_3_a3,
     author = {V. G. Gordienko and D. V. Prokhorov},
     title = {The {Bombieri} {Problem} for {Bounded} {Univalent} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {364--374},
     publisher = {mathdoc},
     volume = {105},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a3/}
}
TY  - JOUR
AU  - V. G. Gordienko
AU  - D. V. Prokhorov
TI  - The Bombieri Problem for Bounded Univalent Functions
JO  - Matematičeskie zametki
PY  - 2019
SP  - 364
EP  - 374
VL  - 105
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a3/
LA  - ru
ID  - MZM_2019_105_3_a3
ER  - 
%0 Journal Article
%A V. G. Gordienko
%A D. V. Prokhorov
%T The Bombieri Problem for Bounded Univalent Functions
%J Matematičeskie zametki
%D 2019
%P 364-374
%V 105
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a3/
%G ru
%F MZM_2019_105_3_a3
V. G. Gordienko; D. V. Prokhorov. The Bombieri Problem for Bounded Univalent Functions. Matematičeskie zametki, Tome 105 (2019) no. 3, pp. 364-374. http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a3/

[1] E. Bombieri, “On the local maximum property of the Koebe function”, Invent. Math., 4 (1967), 26–67 | DOI | MR | Zbl

[2] D. Bshouty, W. Hengartner, “Local behavior of coefficients in subclasses of $S$”, Topics in Complex Analysis, Contemp. Math., 38, Amer. Math. Soc., Providence, RI, 1985, 77–84 | DOI | MR

[3] D. Bshouty, W. Hengartner, “A variation of the Koebe mapping in a dense subset of $S$”, Canad. J. Math., 39:1 (1987), 54–73 | DOI | MR | Zbl

[4] R. Greiner, O. Roth, “On support points of univalent functions and a disproof of a conjecture of Bombieri”, Proc. Amer. Math. Soc., 129:12 (2001), 3657–3664 | DOI | MR | Zbl

[5] D. Aharonov, D. Bshouty, “A problem of Bombieri on univalent functions”, Comput. Methods Funct. Theory, 16:4 (2016), 677–688 | DOI | MR | Zbl

[6] I. Efraimidis, “On the failure of Bombieri's conjecture for univalent functions”, Comput. Methods Funct. Theory, 18:3 (2018), 427–438, arXiv: math.CV/1612.07242v2 | MR | Zbl

[7] Yuk-Y. Leung, “On the Bombieri numbers for the class $S$”, J. Anal., 24:2 (2016), 229–250 | DOI | MR | Zbl

[8] L. de Branges, “A proof of the Bieberbach conjecture”, Acta Math., 154:1-2 (1985), 137–152 | DOI | MR | Zbl

[9] A. C. Schaeffer, D. C. Spencer, Coefficient Regions for Schlicht Functions, Amer. Math. Soc., Providence, RI, 1950 | MR | Zbl

[10] A. C. Schaeffer, D. C. Spencer, “The coefficients of schlicht functions. II”, Duke Math. J., 12 (1945), 107–125 | DOI | MR | Zbl