Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_105_3_a3, author = {V. G. Gordienko and D. V. Prokhorov}, title = {The {Bombieri} {Problem} for {Bounded} {Univalent} {Functions}}, journal = {Matemati\v{c}eskie zametki}, pages = {364--374}, publisher = {mathdoc}, volume = {105}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a3/} }
V. G. Gordienko; D. V. Prokhorov. The Bombieri Problem for Bounded Univalent Functions. Matematičeskie zametki, Tome 105 (2019) no. 3, pp. 364-374. http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a3/
[1] E. Bombieri, “On the local maximum property of the Koebe function”, Invent. Math., 4 (1967), 26–67 | DOI | MR | Zbl
[2] D. Bshouty, W. Hengartner, “Local behavior of coefficients in subclasses of $S$”, Topics in Complex Analysis, Contemp. Math., 38, Amer. Math. Soc., Providence, RI, 1985, 77–84 | DOI | MR
[3] D. Bshouty, W. Hengartner, “A variation of the Koebe mapping in a dense subset of $S$”, Canad. J. Math., 39:1 (1987), 54–73 | DOI | MR | Zbl
[4] R. Greiner, O. Roth, “On support points of univalent functions and a disproof of a conjecture of Bombieri”, Proc. Amer. Math. Soc., 129:12 (2001), 3657–3664 | DOI | MR | Zbl
[5] D. Aharonov, D. Bshouty, “A problem of Bombieri on univalent functions”, Comput. Methods Funct. Theory, 16:4 (2016), 677–688 | DOI | MR | Zbl
[6] I. Efraimidis, “On the failure of Bombieri's conjecture for univalent functions”, Comput. Methods Funct. Theory, 18:3 (2018), 427–438, arXiv: math.CV/1612.07242v2 | MR | Zbl
[7] Yuk-Y. Leung, “On the Bombieri numbers for the class $S$”, J. Anal., 24:2 (2016), 229–250 | DOI | MR | Zbl
[8] L. de Branges, “A proof of the Bieberbach conjecture”, Acta Math., 154:1-2 (1985), 137–152 | DOI | MR | Zbl
[9] A. C. Schaeffer, D. C. Spencer, Coefficient Regions for Schlicht Functions, Amer. Math. Soc., Providence, RI, 1950 | MR | Zbl
[10] A. C. Schaeffer, D. C. Spencer, “The coefficients of schlicht functions. II”, Duke Math. J., 12 (1945), 107–125 | DOI | MR | Zbl