Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_105_3_a14, author = {M. V. Kuznetsov}, title = {On the {Anharmonic} {Oscillator} in the {Heat} {Conduction} {Problem} for {Nilpotent} {Sub-Riemannian} {Lie} {Groups} with {Growth} {Vectors} $(2,3,4)$ and $(2,3,5)$}, journal = {Matemati\v{c}eskie zametki}, pages = {467--470}, publisher = {mathdoc}, volume = {105}, number = {3}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a14/} }
TY - JOUR AU - M. V. Kuznetsov TI - On the Anharmonic Oscillator in the Heat Conduction Problem for Nilpotent Sub-Riemannian Lie Groups with Growth Vectors $(2,3,4)$ and $(2,3,5)$ JO - Matematičeskie zametki PY - 2019 SP - 467 EP - 470 VL - 105 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a14/ LA - ru ID - MZM_2019_105_3_a14 ER -
%0 Journal Article %A M. V. Kuznetsov %T On the Anharmonic Oscillator in the Heat Conduction Problem for Nilpotent Sub-Riemannian Lie Groups with Growth Vectors $(2,3,4)$ and $(2,3,5)$ %J Matematičeskie zametki %D 2019 %P 467-470 %V 105 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a14/ %G ru %F MZM_2019_105_3_a14
M. V. Kuznetsov. On the Anharmonic Oscillator in the Heat Conduction Problem for Nilpotent Sub-Riemannian Lie Groups with Growth Vectors $(2,3,4)$ and $(2,3,5)$. Matematičeskie zametki, Tome 105 (2019) no. 3, pp. 467-470. http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a14/
[1] U. Boscain, J.-P. Gauthier, F. Rossi, Hypoelliptic heat kernel over $3$-step nilpotent Lie groups, 2010, arXiv: 1002.0688v1
[2] Y. S. Choun, Asymptotic behavior of Heun function and its integral formalism, 2013, arXiv: 1303.0876v9
[3] L. Khermander, Analiz lineinykh differentsialrykh operatorov s chastnymi proizvodnymi. T. 1. Teoriya raspredelenii i analiz Fure, Mir, M., 1986 | MR | Zbl
[4] A. A. Agrachev, Yu. L. Sachkov, Geometricheskaya teoriya upravleniya, Fizmatlit, M., 2005
[5] G. Ben Arous, Ann. Inst. Fourier (Grenoble), 39:1 (1989), 73–99 | DOI | MR | Zbl