On the Anharmonic Oscillator in the Heat Conduction Problem for Nilpotent Sub-Riemannian Lie Groups with Growth Vectors $(2,3,4)$ and $(2,3,5)$
Matematičeskie zametki, Tome 105 (2019) no. 3, pp. 467-470
Voir la notice de l'article provenant de la source Math-Net.Ru
Keywords:
nilpotent Lie group, sub-Laplacian, noncommutative harmonic analysis, special functions.
@article{MZM_2019_105_3_a14,
author = {M. V. Kuznetsov},
title = {On the {Anharmonic} {Oscillator} in the {Heat} {Conduction} {Problem} for {Nilpotent} {Sub-Riemannian} {Lie} {Groups} with {Growth} {Vectors} $(2,3,4)$ and $(2,3,5)$},
journal = {Matemati\v{c}eskie zametki},
pages = {467--470},
publisher = {mathdoc},
volume = {105},
number = {3},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a14/}
}
TY - JOUR AU - M. V. Kuznetsov TI - On the Anharmonic Oscillator in the Heat Conduction Problem for Nilpotent Sub-Riemannian Lie Groups with Growth Vectors $(2,3,4)$ and $(2,3,5)$ JO - Matematičeskie zametki PY - 2019 SP - 467 EP - 470 VL - 105 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a14/ LA - ru ID - MZM_2019_105_3_a14 ER -
%0 Journal Article %A M. V. Kuznetsov %T On the Anharmonic Oscillator in the Heat Conduction Problem for Nilpotent Sub-Riemannian Lie Groups with Growth Vectors $(2,3,4)$ and $(2,3,5)$ %J Matematičeskie zametki %D 2019 %P 467-470 %V 105 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a14/ %G ru %F MZM_2019_105_3_a14
M. V. Kuznetsov. On the Anharmonic Oscillator in the Heat Conduction Problem for Nilpotent Sub-Riemannian Lie Groups with Growth Vectors $(2,3,4)$ and $(2,3,5)$. Matematičeskie zametki, Tome 105 (2019) no. 3, pp. 467-470. http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a14/