Multipliers of Absolute Convergence
Matematičeskie zametki, Tome 105 (2019) no. 3, pp. 433-443.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with sequences of positive numbers $(d_n)$ such that, multiplying the Fourier coefficients $(C_n(f))$ of functions from given function classes by these numbers, one obtains a convergent series of the form $\sum|C_n(f)|^pd_n$, ${1\le p2}$. It is established that the resulting conditions cannot be strengthened in a certain sense. The results of the paper imply, in particular, some well-known results for trigonometric Fourier series.
Mots-clés : convergence, Fourier coefficients
Keywords: sequence of numbers.
@article{MZM_2019_105_3_a10,
     author = {V. Sh. Tsagareishvili and G. Tutberidze},
     title = {Multipliers of {Absolute} {Convergence}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {433--443},
     publisher = {mathdoc},
     volume = {105},
     number = {3},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a10/}
}
TY  - JOUR
AU  - V. Sh. Tsagareishvili
AU  - G. Tutberidze
TI  - Multipliers of Absolute Convergence
JO  - Matematičeskie zametki
PY  - 2019
SP  - 433
EP  - 443
VL  - 105
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a10/
LA  - ru
ID  - MZM_2019_105_3_a10
ER  - 
%0 Journal Article
%A V. Sh. Tsagareishvili
%A G. Tutberidze
%T Multipliers of Absolute Convergence
%J Matematičeskie zametki
%D 2019
%P 433-443
%V 105
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a10/
%G ru
%F MZM_2019_105_3_a10
V. Sh. Tsagareishvili; G. Tutberidze. Multipliers of Absolute Convergence. Matematičeskie zametki, Tome 105 (2019) no. 3, pp. 433-443. http://geodesic.mathdoc.fr/item/MZM_2019_105_3_a10/

[1] G. G. Khardi, Dzh. E. Littlvud, G. Polia, Neravenstva, IL, M., 1948 | MR | Zbl

[2] V. Sh. Tsagareishvili, “Absolyutnaya skhodimost ryadov Fure funktsii iz klassa $\operatorname{Lip}1$ i funktsii ogranichennoi variatsii”, Izv. RAN. Ser. matem., 76:2 (2012), 215–224 | DOI | MR | Zbl

[3] A. M. Olevskii, “Ob ortogonalnykh ryadakh po polnym sistemam”, Matem. sb., 58 (100):2 (1962), 707–748 | MR | Zbl

[4] B. C. Kashin, A. A. Saakyan, Ortogonalnye ryady, Izd-vo AFTs, M., 1999 | MR | Zbl

[5] G. Aleksich, Problemy skhodimosti ortogonalnykh ryadov, IL, M., 1963 | MR | Zbl

[6] B. I. Golubov, “O ryadakh Fure nepreryvnykh funktsii po sisteme Khaara”, Izv. AN SSSR. Ser. matem., 28:6 (1964), 1271–1296 | MR | Zbl

[7] H. K. Bari, Trigonometricheskie ryady, Fizmatgiz, M., 1961 | MR

[8] J. R. McLaughlin, “Integrated orthonormal series”, Pacific J. Math., 42 (1972), 469–475 | DOI | MR | Zbl

[9] S. V. Bochkarev, “Ob absolyutnoi skhodimosti ryadov Fure po ogranichennym polnym ortonormirovannym sistemam funktsii”, Matem. sb., 93 (135):2 (1974), 203–217 | MR | Zbl