Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_105_2_a9, author = {V. I. Slyn'ko}, title = {Solution {Area} for a {Class} of {Linear} {Differential} {Equations} with {Hukuhara} {Derivative}}, journal = {Matemati\v{c}eskie zametki}, pages = {294--301}, publisher = {mathdoc}, volume = {105}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a9/} }
V. I. Slyn'ko. Solution Area for a Class of Linear Differential Equations with Hukuhara Derivative. Matematičeskie zametki, Tome 105 (2019) no. 2, pp. 294-301. http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a9/
[1] A. M. Lyapunov, Obschaya zadacha ob ustoichivosti dvizheniya, Gostekhizdat, M.–L., 1950 | MR
[2] V. Lakshmikantham, T. G. Bhaskar, J. Vasundhara Devi, Theory of Set Differential Equations in Metric Spaces, Cambridge Sci. Publ., Cambridge, 2006 | MR | Zbl
[3] A. A. Tolstonogov, Differentsialnye vklyucheniya v banakhovom prostranstve, Nauka, Novosibirsk, 1986 | MR
[4] V. Blyashke, Krug i shar, Nauka, M., 1967 | MR | Zbl
[5] A. D. Aleksandrov, “K teorii smeshannykh ob'emov vypuklykh tel. I. Rasshirenie nekotorykh ponyatii teorii vypuklykh tel”, Matem. sb., 2 (44):5 (1937), 947–972 | Zbl
[6] V. I. Slyn'ko, “Stability in terms of two measures for set difference equations in space $\operatorname{conv}(\mathbb R^3)$”, Appl. Anal., 96:2 (2015), 278–292 | DOI | MR
[7] E. V. Ocheretnyuk, V. I. Slynko, “Otsenki ob'ema reshenii nekotorykh differentsialnykh uravnenii s proizvodnoi Khukukhary”, Matem. zametki, 97:3 (2015), 440–447 | DOI | MR | Zbl
[8] V. I. Slynko, “Ob ustoichivosti nepodvizhnykh tochek diskretnykh dinamicheskikh sistem v prostranstve $\operatorname{conv}\mathbb{R}^n$”, Funkts. analiz i ego pril., 50:2 (2016), 94–96 | DOI | MR | Zbl
[9] E. V. Ocheretnyuk, V. I. Slyn'ko, “Method of comparison for differential equations with the Hukuhara derivative in the space $\operatorname{conv}(\mathbb R^2)$”, J. Math. Sci. (N.Y.), 206:1 (2015), 69–83 | DOI | MR | Zbl