Singular Functions in the Problem of the Weighted Number of Integer Points on Multidimensional Hyperboloids of Special Form
Matematičeskie zametki, Tome 105 (2019) no. 2, pp. 278-293.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to the application of the circle method to the problem of an asymptotics of the weighted number of integer points on multidimensional hyperboloids of a special form. We prove the convergence and positivity of the singular series and obtain an asymptotic formula for the singular integral of this problem. Earlier, only estimates for the singular integral were known.
Keywords: circle method, weighted number of integer points, multidimensional hyperboloid, singular series, singular integral, Ramanujan sum.
Mots-clés : double Gauss sum
@article{MZM_2019_105_2_a8,
     author = {U. M. Pachev and R. A. Dokhov},
     title = {Singular {Functions} in the {Problem} of the {Weighted} {Number} of {Integer} {Points} on {Multidimensional} {Hyperboloids} of {Special} {Form}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {278--293},
     publisher = {mathdoc},
     volume = {105},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a8/}
}
TY  - JOUR
AU  - U. M. Pachev
AU  - R. A. Dokhov
TI  - Singular Functions in the Problem of the Weighted Number of Integer Points on Multidimensional Hyperboloids of Special Form
JO  - Matematičeskie zametki
PY  - 2019
SP  - 278
EP  - 293
VL  - 105
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a8/
LA  - ru
ID  - MZM_2019_105_2_a8
ER  - 
%0 Journal Article
%A U. M. Pachev
%A R. A. Dokhov
%T Singular Functions in the Problem of the Weighted Number of Integer Points on Multidimensional Hyperboloids of Special Form
%J Matematičeskie zametki
%D 2019
%P 278-293
%V 105
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a8/
%G ru
%F MZM_2019_105_2_a8
U. M. Pachev; R. A. Dokhov. Singular Functions in the Problem of the Weighted Number of Integer Points on Multidimensional Hyperboloids of Special Form. Matematičeskie zametki, Tome 105 (2019) no. 2, pp. 278-293. http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a8/

[1] R. Von, Metod Khardi–Littlvuda, Mir, M., 1985 | MR

[2] A. V. Malyshev, “Predstavlenie tselykh chisel kvadratichnymi formami”, Trudy 4-go vsesoyuznogo matematicheskogo s'ezda. T. 2. Sektsionnye doklady, 1964, 118–124, AN SSSR, L.

[3] M. P. Dolciani, On the Representation of Integers by Quadratic Forms, Ph.D. Thesis, Cornell Univ., 1947 | MR

[4] A. V. Malyshev, “O vzveshennom kolichestve tselykh tochek, lezhaschikh na poverkhnosti vtorogo poryadka”, Issledovaniya po teorii chisel, Zap. nauchn. sem. LOMI, 1, M., 1966, 6–83 | MR | Zbl

[5] V. V. Golovizin, “O raspredelenii tselykh tochek na giperbolicheskikh poverkhnostyakh vtorogo poryadka”, Issledovaniya po teorii chisel. 7, Zap. nauchn. sem. LOMI, 106, Izd-vo «Nauka», Leningrad. otd., L., 1981, 52–69 | MR | Zbl

[6] L. N. Kurtova, “Ob odnoi binarnoi additivnoi zadache s kvadratichnymi formami”, Vestn. SamGU. Estestvennonauchn. ser. Matematika, 2007, no. 7 (57), 107–121

[7] R. A. Dokhov, U. M. Pachev, “O vzveshennom chisle tselykh tochek na nekotorykh mnogomernykh giperboloidakh”, Chebyshevskii sb., 16:3 (2015), 219–245

[8] Yu. V. Linnik, Ergodicheskie svoistva algebraicheskikh polei, Izd-vo Leningradskogo un-ta, L., 1967 | MR

[9] B. F. Skubenko, “Asimptoticheskoe raspredelenie tselykh tochek na odnopolostnom giperboloide i ergodicheskie teoremy”, Izv. AN SSSR. Ser. matem., 26:5 (1962), 721–752 | MR | Zbl

[10] U. M. Pachev, “Predstavlenie tselykh chisel izotropnymi ternarnymi kvadratichnymi formami”, Izv. RAN. Ser. matem., 70:3 (2006), 167–184 | DOI | MR | Zbl

[11] U. M. Pachev, “O chisle klassov gaussovogo roda, arifmeticheskii minimum kotorykh delitsya na kvadrat zadannogo nechetnogo chisla”, Matem. zametki, 55:2 (1994), 118–127 | MR | Zbl

[12] U. M. Pachev, R. A. Dokhov, “O chisle tselykh tochek s usloviem delimosti pervykh koordinat na giperboloidakh spetsialnogo vida”, Matem. zametki, 100:6 (2016), 881–886 | DOI | MR | Zbl

[13] A. V. Malyshev, “O predstavlenii tselykh chisel polozhitelnymi kvadratichnymi formami”, Tr. MIAN SSSR, 65, Izd-vo AN SSSR, M., 1962, 3–212 | MR | Zbl

[14] U. M. Pachev, R. A. Dokhov, “O dvoinykh summakh Gaussa, sootvetstvuyuschikh klassam idealov mnimogo kvadratichnogo polya”, Nauchnye vedomosti Belgorodskogo gos. un-a. Ser. Matem., fiz., 19 (162):32 (2013), 108–119

[15] I. M. Vinogradov, Izbrannye trudy, Izd-vo AN SSSR, M., 1952 | MR

[16] A. A. Karatsuba, Osnovy analiticheskoi teorii chisel, Nauka, M., 1983 | MR | Zbl

[17] A. Ogg, Modular Forms and Dirichlet Series, W. A. Benjamin, New York, 1969 | MR | Zbl

[18] G. H. Hardy, E. M. Wrigth, An Introduction to Theory of Numbers, Oxford Univ. Press, New York, 1938 | MR

[19] A. Z. Valfish, “O predstavlenii chisel summami kvadratov. Asimptoticheskie formuly”, UMN, 7:6 (52) (1952), 97–178 | MR | Zbl

[20] E. T. Uitteker, Dzh. N. Vatson, Kurs sovremennogo analiza. Ch. 1. Osnovnye operatsii analiza, Fizmatgiz, M., 1963 | Zbl

[21] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Ellipticheskie i avtomorfnye funktsii. Funktsii Lame i Mate, Spravochnaya matematicheskaya biblioteka, 14, Nauka, M., 1967 | MR | Zbl