Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2019_105_2_a6, author = {A. Yu. Kolesov and N. Kh. Rozov and V. A. Sadovnichii}, title = {On the {Hyperbolicity} of {Toral} {Endomorphisms}}, journal = {Matemati\v{c}eskie zametki}, pages = {251--268}, publisher = {mathdoc}, volume = {105}, number = {2}, year = {2019}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a6/} }
A. Yu. Kolesov; N. Kh. Rozov; V. A. Sadovnichii. On the Hyperbolicity of Toral Endomorphisms. Matematičeskie zametki, Tome 105 (2019) no. 2, pp. 251-268. http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a6/
[1] D. V. Anosov, “Geodezicheskie potoki na zamknutykh rimanovykh mnogoobraziyakh otritsatelnoi krivizny”, Tr. MIAN SSSR, 90, 1967, 3–210 | MR | Zbl
[2] F. Przytycki, “Anosov endomorphisms”, Studia Math., 58:3 (1976), 249–285 | DOI | MR | Zbl
[3] R. Mañé, C. Pugh, “Stability of endomorphisms”, Dynamical Systems – Warwick 1974, Lecture Notes in Math., 468, Springer, Berlin, 1975, 175–184 | DOI | MR
[4] K. Sakai, “Anosov maps on closed topological manifolds”, J. Math. Soc. Japan, 39:3 (1987), 505–519 | DOI | MR | Zbl
[5] A. Yu. Kolesov, N. Kh. Rozov, V. A. Sadovnichii, “Ob odnom dostatochnom uslovii giperbolichnosti otobrazhenii tora”, Differents. uravneniya, 53:4 (2017), 465–486 | DOI | Zbl
[6] B. M. Levitan, Pochti-periodicheskie funktsii, GITTL, M., 1953 | MR | Zbl
[7] J. D. Farmer, E. Ott, J. A. Yorke, “The dimension of chaotic attractors”, Phys. D, 7:1-3 (1983), 153–180 | DOI | MR | Zbl
[8] M. Micena, A. Tahzibi, “On the unstable directions and Lyapunov exponents of Anosov endomorphisms”, Fund. Math., 235:1 (2016), 37–48 | MR | Zbl