The M\"obius Transformation and Smirnov's Inequality for Polynomials
Matematičeskie zametki, Tome 105 (2019) no. 2, pp. 228-239.

Voir la notice de l'article provenant de la source Math-Net.Ru

Differential inequalities for polynomials generalizing the well-known Smirnov, Rahman, Schmeisser, and Bernstein inequalities are obtained.
Keywords: Bernstein's inequality for polynomials, Smirnov's inequality.
@article{MZM_2019_105_2_a4,
     author = {E. G. Ganenkova and V. V. Starkov},
     title = {The {M\"obius} {Transformation} and {Smirnov's} {Inequality} for {Polynomials}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {228--239},
     publisher = {mathdoc},
     volume = {105},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a4/}
}
TY  - JOUR
AU  - E. G. Ganenkova
AU  - V. V. Starkov
TI  - The M\"obius Transformation and Smirnov's Inequality for Polynomials
JO  - Matematičeskie zametki
PY  - 2019
SP  - 228
EP  - 239
VL  - 105
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a4/
LA  - ru
ID  - MZM_2019_105_2_a4
ER  - 
%0 Journal Article
%A E. G. Ganenkova
%A V. V. Starkov
%T The M\"obius Transformation and Smirnov's Inequality for Polynomials
%J Matematičeskie zametki
%D 2019
%P 228-239
%V 105
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a4/
%G ru
%F MZM_2019_105_2_a4
E. G. Ganenkova; V. V. Starkov. The M\"obius Transformation and Smirnov's Inequality for Polynomials. Matematičeskie zametki, Tome 105 (2019) no. 2, pp. 228-239. http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a4/

[1] S. N. Bernshtein, Ekstremalnye svoistva polinomov i nailuchshee priblizhenie nepreryvnykh funktsii odnoi veschestvennoi peremennoi, Ch. 1, ONTI NKTP SSSR, L., 1937

[2] M. Marden, The Geometry of the Zeros of a Polynomial in a Complex Variable, Math. Surveys, 3, Amer. Math. Soc., New York, 1949 | MR | Zbl

[3] Q. I. Rahman, G. Sshmeisser, Analytic Theory of Polynomials, Oxford Univ. Press, Oxford, 2002 | MR | Zbl

[4] V. N. Dubinin, “Metody geometricheskoi teorii funktsii v klassicheskikh i sovremennykh zadachakh dlya polinomov”, UMN, 67:4 (406) (2012), 3–88 | DOI | MR | Zbl

[5] A. V. Olesov, “Differentsialnye neravenstva dlya algebraicheskikh polinomov”, Sib. matem. zhurn., 51:4 (2010), 883–889 | MR | Zbl

[6] V. N. Dubinin, “O polinomakh s kriticheskimi znacheniyami na otrezke”, Matem. zametki, 78:6 (2005), 827–832 | DOI | MR | Zbl

[7] S. N. Bernstein, “Sur la limitation des dérivées des polynomes”, C. R. Acad. Sci. Paris, 190 (1930), 338–341 | Zbl

[8] V. I. Smirnov, N. A. Lebedev, Konstruktivnaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1964 | MR

[9] Q. I. Rahman, “Functions of exponential type”, Trans. Amer. Math. Soc., 135 (1969), 295–309 | DOI | MR | Zbl

[10] S. L. Wali, W. M. Shah, A. Liman, “Inequalities concerning B-operators”, Probl. Anal. Issues Anal., 5 (23):1 (2016), 55–72 | DOI | MR | Zbl

[11] I. Qasim, A. Liman, W. M. Shah, “Refinement of some inequalities concerning the $B_n$-operator of polynomials with restricted zeros”, Period. Math. Hung., 74:1 (2017), 1–10 | DOI | MR

[12] A. Liman, R. N. Mohapatra, W. M. Shah, “Inequalities for polynomials not vanishing in a disk”, Appl. Math. Comput., 218:3 (2011), 949–955 | DOI | MR | Zbl