Hartley Sets and Injectors of a Finite Group
Matematičeskie zametki, Tome 105 (2019) no. 2, pp. 214-227
Voir la notice de l'article provenant de la source Math-Net.Ru
By a Fitting set of a group $G$ one means a nonempty set of subgroups $\mathscr F$ of a finite group $G$ which is closed under taking normal subgroups, their products, and conjugations of subgroups. In the present paper, the existence and conjugacy of $\mathscr F$-injectors of a partially $\pi$-solvable group $G$ is proved and the structure of $\mathscr F$-injectors is described for the case in which $\mathscr F$ is a Hartley set of $G$.
Keywords:
finite group, Fitting set, injector.
Mots-clés : $\pi$-solvable group
Mots-clés : $\pi$-solvable group
@article{MZM_2019_105_2_a3,
author = {N. T. Vorob'ev and T. B. Karaulova},
title = {Hartley {Sets} and {Injectors} of a {Finite} {Group}},
journal = {Matemati\v{c}eskie zametki},
pages = {214--227},
publisher = {mathdoc},
volume = {105},
number = {2},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a3/}
}
N. T. Vorob'ev; T. B. Karaulova. Hartley Sets and Injectors of a Finite Group. Matematičeskie zametki, Tome 105 (2019) no. 2, pp. 214-227. http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a3/