Hartley Sets and Injectors of a Finite Group
Matematičeskie zametki, Tome 105 (2019) no. 2, pp. 214-227.

Voir la notice de l'article provenant de la source Math-Net.Ru

By a Fitting set of a group $G$ one means a nonempty set of subgroups $\mathscr F$ of a finite group $G$ which is closed under taking normal subgroups, their products, and conjugations of subgroups. In the present paper, the existence and conjugacy of $\mathscr F$-injectors of a partially $\pi$-solvable group $G$ is proved and the structure of $\mathscr F$-injectors is described for the case in which $\mathscr F$ is a Hartley set of $G$.
Keywords: finite group, Fitting set, injector.
Mots-clés : $\pi$-solvable group
@article{MZM_2019_105_2_a3,
     author = {N. T. Vorob'ev and T. B. Karaulova},
     title = {Hartley {Sets} and {Injectors} of a {Finite} {Group}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {214--227},
     publisher = {mathdoc},
     volume = {105},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a3/}
}
TY  - JOUR
AU  - N. T. Vorob'ev
AU  - T. B. Karaulova
TI  - Hartley Sets and Injectors of a Finite Group
JO  - Matematičeskie zametki
PY  - 2019
SP  - 214
EP  - 227
VL  - 105
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a3/
LA  - ru
ID  - MZM_2019_105_2_a3
ER  - 
%0 Journal Article
%A N. T. Vorob'ev
%A T. B. Karaulova
%T Hartley Sets and Injectors of a Finite Group
%J Matematičeskie zametki
%D 2019
%P 214-227
%V 105
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a3/
%G ru
%F MZM_2019_105_2_a3
N. T. Vorob'ev; T. B. Karaulova. Hartley Sets and Injectors of a Finite Group. Matematičeskie zametki, Tome 105 (2019) no. 2, pp. 214-227. http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a3/

[1] K. Doerk, T. Hawkes, Finite Soluble Groups, Walter De Gruyter, Berlin, 1992 | MR

[2] W. Guo, Structure Theory for Canonical Classes of Finite Groups, Springer, Heidelberg, 2015 | MR | Zbl

[3] A. Ballester-Bolinches, L. M. Ezquerro, Classes of Finite Groups, Springer, Dordrecht, 2006 | MR | Zbl

[4] B. Fischer, W. Gaschütz, B. Hartley, “Injektoren endlicher auflösbarer Gruppen”, Math. Z., 102 (1967), 337–339 | DOI | MR | Zbl

[5] L. A. Shemetkov, “O podgruppakh $\pi$-razreshimykh grupp”, Konechnye gruppy, Nauka i tekhnika, Minsk, 1975 | MR

[6] W. Anderson, “Injectors in finite soluble groups”, J. Algebra, 36:3 (1975), 333–338 | DOI | MR | Zbl

[7] N. T. Vorobev, M. G. Semenov, “In'ektory vo mnozhestve Fittinga konechnoi gruppy”, Matem. zametki, 97:4 (2015), 516–528 | DOI | MR | Zbl

[8] B. Hartley, “On Fischer's dualization of formation theory”, Proc. London Math. Soc. (3), 3:2 (1969), 193–207 | DOI | MR | Zbl

[9] P. D'Arcy, “Locally defined Fitting classes”, J. Austral. Math. Soc., 20:1 (1975), 25–32 | MR | Zbl

[10] W. Guo, N. T. Vorob'ev, “On injectors of finite soluble groups”, Comm. Algebra, 36:9 (2008), 3200–3208 | DOI | MR | Zbl

[11] M. G. Semenov, “Formula in'ektora konechnoi $\pi$-razreshimoi gruppy”, Problemy fiziki, matematiki i tekhniki, 4:21 (2014), 77–88 | Zbl

[12] D. Revin, E. Vdovin, “On the number of classes of conjugate Hall subgroups in finite simple groups.”, J. Algebra, 324:12 (2010), 3614–3652 | DOI | MR | Zbl

[13] N. Yang, W. Guo, N. T. Vorob'ev, “On $\mathscr F$-injectors of Fitting set of a finite group”, Comm. Algebra, 46:1 (2018), 217–229 | DOI | MR | Zbl

[14] W. B. Guo, “Injectors of finite groups”, Chinese Ann. Math. Ser. A, 18:2 (1997), 145–148 | MR | Zbl

[15] W. Guo, The Theory of Classes of Groups, Sci. Beijing Press, Beijing, 2000 | MR | Zbl

[16] S. A. Chunikhin, Podgruppy konechnykh grupp, Nauka i tekhnika, Minsk, 1964 | MR | Zbl

[17] M. J. Iranzo, F. Pérez Monazor, “$\mathfrak F$-Constraint with respect to a Fitting class”, Arch. Math. (Basel), 46:3 (1986), 205–210 | DOI | MR | Zbl