Hartley Sets and Injectors of a Finite Group
Matematičeskie zametki, Tome 105 (2019) no. 2, pp. 214-227

Voir la notice de l'article provenant de la source Math-Net.Ru

By a Fitting set of a group $G$ one means a nonempty set of subgroups $\mathscr F$ of a finite group $G$ which is closed under taking normal subgroups, their products, and conjugations of subgroups. In the present paper, the existence and conjugacy of $\mathscr F$-injectors of a partially $\pi$-solvable group $G$ is proved and the structure of $\mathscr F$-injectors is described for the case in which $\mathscr F$ is a Hartley set of $G$.
Keywords: finite group, Fitting set, injector.
Mots-clés : $\pi$-solvable group
@article{MZM_2019_105_2_a3,
     author = {N. T. Vorob'ev and T. B. Karaulova},
     title = {Hartley {Sets} and {Injectors} of a {Finite} {Group}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {214--227},
     publisher = {mathdoc},
     volume = {105},
     number = {2},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a3/}
}
TY  - JOUR
AU  - N. T. Vorob'ev
AU  - T. B. Karaulova
TI  - Hartley Sets and Injectors of a Finite Group
JO  - Matematičeskie zametki
PY  - 2019
SP  - 214
EP  - 227
VL  - 105
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a3/
LA  - ru
ID  - MZM_2019_105_2_a3
ER  - 
%0 Journal Article
%A N. T. Vorob'ev
%A T. B. Karaulova
%T Hartley Sets and Injectors of a Finite Group
%J Matematičeskie zametki
%D 2019
%P 214-227
%V 105
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a3/
%G ru
%F MZM_2019_105_2_a3
N. T. Vorob'ev; T. B. Karaulova. Hartley Sets and Injectors of a Finite Group. Matematičeskie zametki, Tome 105 (2019) no. 2, pp. 214-227. http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a3/