On the Inverse Problem for Differential Operators on a Finite Interval with Complex Weights
Matematičeskie zametki, Tome 105 (2019) no. 2, pp. 313-320
Voir la notice de l'article provenant de la source Math-Net.Ru
Inverse problems of spectral analysis for second-order differential operators on a finite interval with complex-valued weights and with an arbitrary number of discontinuity conditions for the solutions inside the interval are studied. Properties of the spectral characteristics are established, and uniqueness theorems for this class of inverse problems are proved.
Keywords:
Sturm–Liouville operators, complex weights, inverse spectral problems.
@article{MZM_2019_105_2_a11,
author = {V. A. Yurko},
title = {On the {Inverse} {Problem} for {Differential} {Operators} on a {Finite} {Interval} with {Complex} {Weights}},
journal = {Matemati\v{c}eskie zametki},
pages = {313--320},
publisher = {mathdoc},
volume = {105},
number = {2},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a11/}
}
TY - JOUR AU - V. A. Yurko TI - On the Inverse Problem for Differential Operators on a Finite Interval with Complex Weights JO - Matematičeskie zametki PY - 2019 SP - 313 EP - 320 VL - 105 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a11/ LA - ru ID - MZM_2019_105_2_a11 ER -
V. A. Yurko. On the Inverse Problem for Differential Operators on a Finite Interval with Complex Weights. Matematičeskie zametki, Tome 105 (2019) no. 2, pp. 313-320. http://geodesic.mathdoc.fr/item/MZM_2019_105_2_a11/