Second-Order Tangent-Valued Forms
Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 84-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

Tangent-valued forms, tangent and cotangent vectors of the first and the second order are considered. For an affine connection, second-order tangent-valued (vertical and horizontal) forms determining linear operators in the second-order tangent and cotangent spaces are constructed.
Keywords: tangent-valued form, affine connection.
Mots-clés : second-order tangent and cotangent spaces
@article{MZM_2019_105_1_a7,
     author = {K. V. Polyakova},
     title = {Second-Order {Tangent-Valued} {Forms}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {84--94},
     publisher = {mathdoc},
     volume = {105},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a7/}
}
TY  - JOUR
AU  - K. V. Polyakova
TI  - Second-Order Tangent-Valued Forms
JO  - Matematičeskie zametki
PY  - 2019
SP  - 84
EP  - 94
VL  - 105
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a7/
LA  - ru
ID  - MZM_2019_105_1_a7
ER  - 
%0 Journal Article
%A K. V. Polyakova
%T Second-Order Tangent-Valued Forms
%J Matematičeskie zametki
%D 2019
%P 84-94
%V 105
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a7/
%G ru
%F MZM_2019_105_1_a7
K. V. Polyakova. Second-Order Tangent-Valued Forms. Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 84-94. http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a7/

[1] G. F. Laptev, “Osnovnye infinitezimalnye struktury vysshikh poryadkov na gladkom mnogoobrazii”, Tr. Geom. semin., 1, VINITI, M., 1966, 139–189 | MR | Zbl

[2] L. E. Evtushik, Yu. G. Lumiste, N. M. Ostianu, A. P. Shirokov, “Differentsialno-geometricheskie struktury na mnogoobraziyakh”, Itogi nauki i tekhn. Ser. Probl. geom., 9, VINITI, M., 1979, 5–246 | MR | Zbl

[3] G. A. Sardanashvili, Geometriya i klassicheskie polya. 1. Sovremennye metody teorii polya, URSS, M., 1996 | MR

[4] L. Schwartz, “Géométrie différentielle du 2ème ordre, semi-martingales et équations différentielles stochastiques sur une variété différentielle”, Séminaire de Probabilités XVI, 1980/81 Supplément: Géométrie Différentielle Stochastique, Lecture Notes in Math., 921, Springer, Berlin, 1982, 1–148 | DOI | MR

[5] M. Emery, P. A. Meyer, Stochastic Calculus in Manifolds, Springer, Berlin, 1989 | MR | Zbl

[6] P. A. Meyer, “Géométrie stochastiqua sans larmes”, Séminaire de Probabilités XV 1979/80, Lecture Notes in Math., 850, Springer, Berlin, 1981, 44–102 | DOI | MR

[7] M. Emery, An Invitation to Second-Order Stochastic Differential Geometry, , 2007 https://hal.archives-ouvertes.fr/hal-00145073

[8] P. Catuogno, “A geometric Itô formula”, Mat. Contemp., 33 (2005), 85–99 | MR

[9] M. A. Akivis, Mnogomernaya differentsialnaya geometriya, Kalininskii gos. un-t, Kalinin, 1977

[10] W. Slebodzinski, Formes extérieures et leurs applications, Vol. I, PWN, Warszawa, 1954 | MR

[11] R. Zulanke, P. Vintgen, Differentsialnaya geometriya i rassloeniya, Mir, M., 1975 | MR | Zbl

[12] A. K. Rybnikov, “Ob affinnykh svyaznostyakh vtorogo poryadka”, Matem. zametki, 29:2 (1981), 279–290 | MR | Zbl

[13] K. V. Polyakova, “Dvoistvennye metody issledovaniya differentsialno-geometricheskikh struktur”, Differentsialnaya geometriya mnogoobrazii figur, 45, Kaliningrad, 2014, 92–104 | MR

[14] Yu. I. Shevchenko, Osnascheniya golonomnykh i negolonomnykh gladkikh mnogoobrazii, Kaliningrad, 1998

[15] R. L. Bishop, R. Dzh. Krittenden, Geometriya mnogoobrazii, Mir, M., 1967 | MR | Zbl

[16] M. M. Postnikov, Lektsii po geometrii. Semestr IV. Differentsialnaya geometriya, Nauka, M., 1988