Optimal Synthesis in a Model Problem with Two-Dimensional Control Lying in an Arbitrary Convex Set
Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 42-64
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a model nilpotent convex problem with two-dimensional control from an arbitrary convex set $\Omega$. For the case in which $\Omega$ is a polygon, the problem is solved explicitly. For the case of an arbitrary set $\Omega$, we completely describe the asymptotics of optimal trajectories and the geometric properties of the optimal synthesis.
Keywords:
optimal synthesis, two-dimensional control, nilpotent convex problem.
@article{MZM_2019_105_1_a4,
author = {L. V. Lokoutsievskiy and V. A. Mirikova},
title = {Optimal {Synthesis} in a {Model} {Problem} with {Two-Dimensional} {Control} {Lying} in an {Arbitrary} {Convex} {Set}},
journal = {Matemati\v{c}eskie zametki},
pages = {42--64},
year = {2019},
volume = {105},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a4/}
}
TY - JOUR AU - L. V. Lokoutsievskiy AU - V. A. Mirikova TI - Optimal Synthesis in a Model Problem with Two-Dimensional Control Lying in an Arbitrary Convex Set JO - Matematičeskie zametki PY - 2019 SP - 42 EP - 64 VL - 105 IS - 1 UR - http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a4/ LA - ru ID - MZM_2019_105_1_a4 ER -
L. V. Lokoutsievskiy; V. A. Mirikova. Optimal Synthesis in a Model Problem with Two-Dimensional Control Lying in an Arbitrary Convex Set. Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 42-64. http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a4/
[1] L. V. Lokutsievskii, “Osobye rezhimy v upravlyaemykh sistemakh s mnogomernym upravleniem iz mnogogrannika”, Izv. RAN. Ser. matem., 78:5 (2014), 167–190 | DOI | MR | Zbl
[2] L. V. Lokutsievskii, “Ob optimalnom potoke v odnom klasse nilpotentno-vypuklykh zadach”, Optimalnoe upravlenie, Tr. MIAN, 291, MAIK «Nauka/Interperiodika», M., 2015, 157–181 | DOI