On the Cauchy Problem for a Generalized Emden--Fowler-Type Equation
Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 153-157.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: generalized Emden–Fowler type equation, Cauchy problem, asymptotic behavior of solutions.
@article{MZM_2019_105_1_a15,
     author = {G. Krtinich and M. Mikic},
     title = {On the {Cauchy} {Problem} for a {Generalized} {Emden--Fowler-Type} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {153--157},
     publisher = {mathdoc},
     volume = {105},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a15/}
}
TY  - JOUR
AU  - G. Krtinich
AU  - M. Mikic
TI  - On the Cauchy Problem for a Generalized Emden--Fowler-Type Equation
JO  - Matematičeskie zametki
PY  - 2019
SP  - 153
EP  - 157
VL  - 105
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a15/
LA  - ru
ID  - MZM_2019_105_1_a15
ER  - 
%0 Journal Article
%A G. Krtinich
%A M. Mikic
%T On the Cauchy Problem for a Generalized Emden--Fowler-Type Equation
%J Matematičeskie zametki
%D 2019
%P 153-157
%V 105
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a15/
%G ru
%F MZM_2019_105_1_a15
G. Krtinich; M. Mikic. On the Cauchy Problem for a Generalized Emden--Fowler-Type Equation. Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 153-157. http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a15/

[1] R. Bellman, Teoriya ustoichivosti reshenii differentsialnykh uravnenii, Nauka, M., 1954 | MR

[2] I. T. Kiguradze, T. F. Chanturiya, Asimptoticheskie svoistva reshenii neavtonomnykh obyknovennykh differentsialnykh uravnenii, Nauka, M., 1990 | MR | Zbl

[3] Yu. Knezhevich-Milyanovich, Differents. uravneniya, 43:12 (2007), 1710–1711 | MR

[4] Yu. Knezhevich-Milyanovich, Differents. uravneniya, 45:2 (2009), 260–262 | MR

[5] M. Mikić, Kragujevac J. Math., 40:1 (2016), 105–112 | DOI | MR | Zbl