On the Automorphism Group of an Antipodal Tight Graph of Diameter~$4$ with Parameters $(5,7,r)$
Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 123-135.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the automorphism group of every $\mathrm{AT}4(5,7,r)$-graph acts intransitively on the set of its arcs. Moreover, it is established that the automorphism group of any strongly regular graph with parameters $(329,40,3,5)$ acts intransitively on the set of its vertices.
Keywords: distance-regular graph, antipodal tight graph, vertex-transitive graph.
@article{MZM_2019_105_1_a10,
     author = {L. Yu. Tsiovkina},
     title = {On the {Automorphism} {Group} of an {Antipodal} {Tight} {Graph} of {Diameter~}$4$ with {Parameters} $(5,7,r)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {123--135},
     publisher = {mathdoc},
     volume = {105},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a10/}
}
TY  - JOUR
AU  - L. Yu. Tsiovkina
TI  - On the Automorphism Group of an Antipodal Tight Graph of Diameter~$4$ with Parameters $(5,7,r)$
JO  - Matematičeskie zametki
PY  - 2019
SP  - 123
EP  - 135
VL  - 105
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a10/
LA  - ru
ID  - MZM_2019_105_1_a10
ER  - 
%0 Journal Article
%A L. Yu. Tsiovkina
%T On the Automorphism Group of an Antipodal Tight Graph of Diameter~$4$ with Parameters $(5,7,r)$
%J Matematičeskie zametki
%D 2019
%P 123-135
%V 105
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a10/
%G ru
%F MZM_2019_105_1_a10
L. Yu. Tsiovkina. On the Automorphism Group of an Antipodal Tight Graph of Diameter~$4$ with Parameters $(5,7,r)$. Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 123-135. http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a10/

[1] L. Yu. Tsiovkina, “Two new infinite families of arc-transitive antipodal distance-regular graphs of diameter three with $\lambda=\mu$ related to groups $Sz(q)$ and ${^2G}_2(q)$”, J. Algebraic Combin., 41:4 (2015), 1079–1087 | DOI | MR | Zbl

[2] L. Yu. Tsiovkina, “Arc-transitive antipodal distance-regular covers of complete graphs related to $SU_3(q)$”, Discrete Math., 340:2 (2017), 63–71 | DOI | MR | Zbl

[3] A. Jurišić, J. Koolen, “Krein parameters and antipodal tight graphs with diameter $3$ and $4$”, Discrete Math., 244 (2002), 181–202 | DOI | MR | Zbl

[4] A. Jurišić, J. Koolen, “Classification of the family $\mathrm{AT}4(qs, q, q)$ of antipodal tight graphs”, J. Combin. Theory. Ser. A, 118:3 (2011), 842–852 | DOI | MR | Zbl

[5] A. A. Makhnev, D. V. Paduchikh, “Nebolshie $AT4$-grafy i otvechayuschie im silno regulyarnye podgrafy”, Tr. IMM UrO RAN, 22, no. 1, 2016, 220–230 | MR

[6] A. E. Brouwer, Parameters of Strongly Regular Graphs, http://www.win.tue.nl/~aeb/graphs/srg/srgtab.html

[7] A. E. Brouwer, A. M. Cohen, A. Neumaier, Distance-Regular Graphs, Springer-Verlag, Berlin, 1989 | MR | Zbl

[8] P. J. Cameron, Permutation Groups, Cambridge Univ. Press, Cambridge, 1999 | MR | Zbl

[9] M. Behbahani, C. Lam, “Strongly regular graphs with non-trivial automorphisms”, Discrete Math., 311 (2011), 132–144 | DOI | MR | Zbl

[10] A. V. Zavarnitsine, “Finite simple groups with narrow prime spectrum”, Sib. elektron. matem. izv., 6 (2009), 1–12 | MR

[11] R. Guralnick, B. Kunyavskiǐ, E. Plotkin, A. Shalev, “Thompson-like characterizations of the solvable radical”, J. Algebra, 300 (2006), 363–375 | DOI | MR | Zbl