On the Automorphism Group of an Antipodal Tight Graph of Diameter~$4$ with Parameters $(5,7,r)$
Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 123-135

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the automorphism group of every $\mathrm{AT}4(5,7,r)$-graph acts intransitively on the set of its arcs. Moreover, it is established that the automorphism group of any strongly regular graph with parameters $(329,40,3,5)$ acts intransitively on the set of its vertices.
Keywords: distance-regular graph, antipodal tight graph, vertex-transitive graph.
@article{MZM_2019_105_1_a10,
     author = {L. Yu. Tsiovkina},
     title = {On the {Automorphism} {Group} of an {Antipodal} {Tight} {Graph} of {Diameter~}$4$ with {Parameters} $(5,7,r)$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {123--135},
     publisher = {mathdoc},
     volume = {105},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a10/}
}
TY  - JOUR
AU  - L. Yu. Tsiovkina
TI  - On the Automorphism Group of an Antipodal Tight Graph of Diameter~$4$ with Parameters $(5,7,r)$
JO  - Matematičeskie zametki
PY  - 2019
SP  - 123
EP  - 135
VL  - 105
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a10/
LA  - ru
ID  - MZM_2019_105_1_a10
ER  - 
%0 Journal Article
%A L. Yu. Tsiovkina
%T On the Automorphism Group of an Antipodal Tight Graph of Diameter~$4$ with Parameters $(5,7,r)$
%J Matematičeskie zametki
%D 2019
%P 123-135
%V 105
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a10/
%G ru
%F MZM_2019_105_1_a10
L. Yu. Tsiovkina. On the Automorphism Group of an Antipodal Tight Graph of Diameter~$4$ with Parameters $(5,7,r)$. Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 123-135. http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a10/