On the Automorphism Group of an Antipodal Tight Graph of Diameter~$4$ with Parameters $(5,7,r)$
Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 123-135
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that the automorphism group of every $\mathrm{AT}4(5,7,r)$-graph acts intransitively on the set of its arcs. Moreover, it is established that the automorphism group of any strongly regular graph with parameters $(329,40,3,5)$ acts intransitively on the set of its vertices.
Keywords:
distance-regular graph, antipodal tight graph, vertex-transitive graph.
@article{MZM_2019_105_1_a10,
author = {L. Yu. Tsiovkina},
title = {On the {Automorphism} {Group} of an {Antipodal} {Tight} {Graph} of {Diameter~}$4$ with {Parameters} $(5,7,r)$},
journal = {Matemati\v{c}eskie zametki},
pages = {123--135},
publisher = {mathdoc},
volume = {105},
number = {1},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a10/}
}
TY - JOUR AU - L. Yu. Tsiovkina TI - On the Automorphism Group of an Antipodal Tight Graph of Diameter~$4$ with Parameters $(5,7,r)$ JO - Matematičeskie zametki PY - 2019 SP - 123 EP - 135 VL - 105 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a10/ LA - ru ID - MZM_2019_105_1_a10 ER -
L. Yu. Tsiovkina. On the Automorphism Group of an Antipodal Tight Graph of Diameter~$4$ with Parameters $(5,7,r)$. Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 123-135. http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a10/