Cohomology of Formal Modules over Local Fields
Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 3-8

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure of the first Galois cohomology groups for the group of points of a formal module in extensions of local fields is studied. A complete description for unramified extensions and classical formal group laws is obtained.
Keywords: formal module over a local field, formal group law.
@article{MZM_2019_105_1_a0,
     author = {S. V. Vostokov and I. I. Nekrasov},
     title = {Cohomology of {Formal} {Modules} over {Local} {Fields}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--8},
     publisher = {mathdoc},
     volume = {105},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a0/}
}
TY  - JOUR
AU  - S. V. Vostokov
AU  - I. I. Nekrasov
TI  - Cohomology of Formal Modules over Local Fields
JO  - Matematičeskie zametki
PY  - 2019
SP  - 3
EP  - 8
VL  - 105
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a0/
LA  - ru
ID  - MZM_2019_105_1_a0
ER  - 
%0 Journal Article
%A S. V. Vostokov
%A I. I. Nekrasov
%T Cohomology of Formal Modules over Local Fields
%J Matematičeskie zametki
%D 2019
%P 3-8
%V 105
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a0/
%G ru
%F MZM_2019_105_1_a0
S. V. Vostokov; I. I. Nekrasov. Cohomology of Formal Modules over Local Fields. Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 3-8. http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a0/