Cohomology of Formal Modules over Local Fields
Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 3-8.

Voir la notice de l'article provenant de la source Math-Net.Ru

The structure of the first Galois cohomology groups for the group of points of a formal module in extensions of local fields is studied. A complete description for unramified extensions and classical formal group laws is obtained.
Keywords: formal module over a local field, formal group law.
@article{MZM_2019_105_1_a0,
     author = {S. V. Vostokov and I. I. Nekrasov},
     title = {Cohomology of {Formal} {Modules} over {Local} {Fields}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {3--8},
     publisher = {mathdoc},
     volume = {105},
     number = {1},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a0/}
}
TY  - JOUR
AU  - S. V. Vostokov
AU  - I. I. Nekrasov
TI  - Cohomology of Formal Modules over Local Fields
JO  - Matematičeskie zametki
PY  - 2019
SP  - 3
EP  - 8
VL  - 105
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a0/
LA  - ru
ID  - MZM_2019_105_1_a0
ER  - 
%0 Journal Article
%A S. V. Vostokov
%A I. I. Nekrasov
%T Cohomology of Formal Modules over Local Fields
%J Matematičeskie zametki
%D 2019
%P 3-8
%V 105
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a0/
%G ru
%F MZM_2019_105_1_a0
S. V. Vostokov; I. I. Nekrasov. Cohomology of Formal Modules over Local Fields. Matematičeskie zametki, Tome 105 (2019) no. 1, pp. 3-8. http://geodesic.mathdoc.fr/item/MZM_2019_105_1_a0/

[1] S. V. Vostokov, I. I. Nekrasov, “Formalnyi modul Lyubina–Teita v tsiklicheskom nerazvetvlennom $p$-rasshirenii kak modul Galua”, Voprosy teorii predstavlenii algebr i grupp. 27, Zap. nauchn. sem. POMI, 430, POMI, SPb., 2014, 61–66 | MR

[2] S. V. Vostokov, I. I. Nekrasov, R. P. Vostokova, “Filtratsiya Lyutts kak modul Galua”, Lobachevskii J. Math., 37:2 (2016), 214–221 | DOI | MR | Zbl

[3] Z. I. Borevich, “K stroeniyu privedennoi multiplikativnoi gruppy tsiklicheskogo rasshireniya lokalnogo polya”, Izv. AN SSSR. Ser. matem., 24:2 (1960), 145–152 | MR | Zbl

[4] Z. I. Borevich, “O multiplikativnoi gruppe tsiklicheskikh $p$-rasshirenii lokalnogo polya”, Algebraicheskaya teoriya chisel i predstavleniya, Tr. MIAN SSSR, 80, Nauka, M.–L., 1965, 16–29 | MR | Zbl

[5] J. Lubin, “One-parameter formal Lie groups over $p$-adic integer rings”, Ann. of Math., 80 (1964), 464–484 | DOI | MR | Zbl

[6] J. Lubin, “Entireness of the endomorphism rings of one-dimensional formal groups”, Proc. Amer. Math. Soc., 52 (1975), 8–10 | DOI | MR | Zbl

[7] N. P. Strickland, “Formal schemes and formal groups”, Homotopy Invariant Algebraic Structures, Contemp. Math., 239, Amer. Math. Soc., Providence, RI, 1999, 263–352 | MR | Zbl

[8] M. I. Bashmakov, A. N. Kirillov, “Filtratsiya Lyutts formalnykh grupp”, Izv. AN SSSR. Ser. matem., 39:6 (1975), 1227–1239 | MR | Zbl

[9] M. V. Bondarko, S. V. Vostokov, I. B. Zhukov, “Additivnye moduli Galua v polnykh diskretno normirovannykh polyakh”, Algebra i analiz, 9:4 (1997), 28–46 | MR | Zbl

[10] M. V. Bondarko, S. V. Vostokov, “Additivnye moduli Galua dedekindovykh kolets. Razlozhimost”, Algebra i analiz, 11:6 (1999), 103–121 | MR | Zbl