Thouvenot's Isomorphism Problem for Tensor Powers of Ergodic Flows
Matematičeskie zametki, Tome 104 (2018) no. 6, pp. 912-917.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $S$ and $T$ be automorphisms of a probability space whose powers $S \otimes S$ and $T \otimes T$ isomorphic. Are the automorphisms $S$ and $T$ isomorphic? This question of Thouvenot is well known in ergodic theory. We answer this question and generalize a result of Kulaga concerning isomorphism in the case of flows. We show that if weakly mixing flows $S_t \otimes S_t$ and $T_t \otimes T_t$ are isomorphic, then so are the flows $S_t$ and $T_t$, provided that one of them has a weak integral limit.
Keywords: flow with invariant measure, weak closure, tensor power of a dynamical system, metric isomorphism.
@article{MZM_2018_104_6_a8,
     author = {V. V. Ryzhikov},
     title = {Thouvenot's {Isomorphism} {Problem} for {Tensor} {Powers} of {Ergodic} {Flows}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {912--917},
     publisher = {mathdoc},
     volume = {104},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a8/}
}
TY  - JOUR
AU  - V. V. Ryzhikov
TI  - Thouvenot's Isomorphism Problem for Tensor Powers of Ergodic Flows
JO  - Matematičeskie zametki
PY  - 2018
SP  - 912
EP  - 917
VL  - 104
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a8/
LA  - ru
ID  - MZM_2018_104_6_a8
ER  - 
%0 Journal Article
%A V. V. Ryzhikov
%T Thouvenot's Isomorphism Problem for Tensor Powers of Ergodic Flows
%J Matematičeskie zametki
%D 2018
%P 912-917
%V 104
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a8/
%G ru
%F MZM_2018_104_6_a8
V. V. Ryzhikov. Thouvenot's Isomorphism Problem for Tensor Powers of Ergodic Flows. Matematičeskie zametki, Tome 104 (2018) no. 6, pp. 912-917. http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a8/

[1] V. V. Ryzhikov, “Tipichnost izomorfizma sokhranyayuschikh meru preobrazovanii pri izomorfizme ikh dekartovykh stepenei”, Matem. zametki, 59:4 (1996), 630–632 | DOI | MR | Zbl

[2] A. I. Bashtanov, “Tipichnoe peremeshivanie imeet rang $1$”, Matem. zametki, 93:2 (2013), 163–171 | DOI | MR | Zbl

[3] S. V. Tikhonov, “Vlozheniya deistvii reshetki v potoki s mnogomernym vremenem”, Matem. sb., 197:1 (2006), 97–132 | DOI | MR | Zbl

[4] A. E. Troitskaya, “Ob izomorfizme sokhranyayuschikh meru $\mathbb Z^2$-deistvii pri izomorfizme ikh dekartovykh stepenei”, Fundament. i prikl. matem., 13:8 (2007), 193–212 | MR | Zbl

[5] J. Kulaga, “A note on the isomorphism of Cartesian products of ergodic flows”, J. Dyn. Control Syst., 18:2 (2012), 247–267 | DOI | MR | Zbl

[6] V. V. Ryzhikov, “Ob asimmetrii kratnykh asimptoticheskikh svoistv ergodicheskikh deistvii”, Matem. zametki, 96:3 (2014), 432–439 | DOI | MR | Zbl

[7] A. Yu. Kushnir, V. V. Ryzhikov, “Slabye zamykaniya ergodicheskikh deistvii”, Matem. zametki, 100:6 (2016), 847–854 | DOI | MR

[8] M. S. Lobanov, V. V. Ryzhikov, “Spetsialnye slabye predely i prostoi spektr tenzornykh proizvedenii potokov”, Matem. sb., 209:5 (2018), 62–73 | DOI | Zbl

[9] A. V. Kochergin, “Nevyrozhdennye sedla i otsutstvie peremeshivaniya II”, Matem. zametki, 81:1 (2007), 145–148 | DOI | MR | Zbl

[10] A. I. Danilenko, “Finite ergodic index and asymmetry for infinite measure preserving actions”, Proc. Amer. Math. Soc., 144:6 (2016), 2521–2532 | DOI | MR | Zbl

[11] V. V. Ryzhikov, Zh.-P. Tuveno, “O tsentralizatore beskonechnogo peremeshivayuschego preobrazovaniya ranga odin”, Funkts. analiz i ego pril., 49:3 (2015), 88–91 | DOI | Zbl

[12] I. V. Klimov, V. V. Ryzhikov, “Minimalnye samoprisoedineniya beskonechnykh peremeshivayuschikh deistvii ranga 1”, Matem. zametki, 102:6 (2017), 851–856 | DOI | Zbl