Estimates of the Best Approximation of Polynomials by Simple Partial Fractions
Matematičeskie zametki, Tome 104 (2018) no. 6, pp. 851-862.

Voir la notice de l'article provenant de la source Math-Net.Ru

An asymptotics of the error of interpolation of real constants at Chebyshev nodes is obtained. Some well-known estimates of the best approximation by simple partial fractions (logarithmic derivatives of algebraic polynomials) of real constants in the closed interval $[-1,1]$ and complex constants in the unit disk are refined. As a consequence, new estimates of the best approximation of real polynomials on closed intervals of the real axis and of complex polynomials on arbitrary compact sets are obtained.
Keywords: simple partial fraction, approximation, estimate, best approximation.
@article{MZM_2018_104_6_a4,
     author = {M. A. Komarov},
     title = {Estimates of the {Best} {Approximation} of {Polynomials} by {Simple} {Partial} {Fractions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {851--862},
     publisher = {mathdoc},
     volume = {104},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a4/}
}
TY  - JOUR
AU  - M. A. Komarov
TI  - Estimates of the Best Approximation of Polynomials by Simple Partial Fractions
JO  - Matematičeskie zametki
PY  - 2018
SP  - 851
EP  - 862
VL  - 104
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a4/
LA  - ru
ID  - MZM_2018_104_6_a4
ER  - 
%0 Journal Article
%A M. A. Komarov
%T Estimates of the Best Approximation of Polynomials by Simple Partial Fractions
%J Matematičeskie zametki
%D 2018
%P 851-862
%V 104
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a4/
%G ru
%F MZM_2018_104_6_a4
M. A. Komarov. Estimates of the Best Approximation of Polynomials by Simple Partial Fractions. Matematičeskie zametki, Tome 104 (2018) no. 6, pp. 851-862. http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a4/

[1] V. I. Danchenko, D. Ya. Danchenko, “O ravnomernom priblizhenii logarifmicheskimi proizvodnymi mnogochlenov”, Teoriya funktsii, ee prilozheniya i smezhnye voprosy, Materialy shkoly-konferentsii, posvyaschennoi 130-letiyu so dnya rozhdeniya D. F. Egorova, Kazan, 1999, 74–77

[2] V. I. Danchenko, D. Ya. Danchenko, “O priblizhenii naiprosteishimi drobyami”, Matem. zametki, 70:4 (2001), 553–559 | DOI | MR | Zbl

[3] O. N. Kosukhin, “Ob approksimatsionnykh svoistvakh naiprosteishikh drobei”, Vestn. Mosk. un-ta. Ser. 1. Matem., mekh., 2001, no. 4, 54–59 | MR | Zbl

[4] O. N. Kosukhin, O nekotorykh netraditsionnykh metodakh priblizheniya, svyazannykh s kompleksnymi polinomami, Dis. $\dots$ kand. fiz.-matem. nauk, Mosk. un-t, M., 2005 | Zbl

[5] E. N. Kondakova, “Interpolyatsiya naiprosteishimi drobyami”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 9:2 (2009), 30–37

[6] M. A. Komarov, “Kriterii nailuchshego priblizheniya konstant naiprosteishimi drobyami”, Matem. zametki, 93:2 (2013), 209–215 | DOI | MR | Zbl

[7] M. A. Komarov, “Skorost nailuchshego priblizheniya konstant naiprosteishimi drobyami i alternans”, Matem. zametki, 97:5 (2015), 718–732 | DOI | MR | Zbl

[8] V. I. Danchenko, “Otsenki proizvodnykh naiprosteishikh drobei i drugie voprosy”, Matem. sb., 197:4 (2006), 33–52 | DOI | MR | Zbl

[9] V. I. Danchenko, “Ob approksimativnykh svoistvakh summ vida $\sum_k\lambda_kh(\lambda_k z)$”, Matem. zametki, 83:5 (2008), 643–649 | DOI | MR | Zbl

[10] P. Chunaev, V. Danchenko, “Approximation by amplitude and frequency operators”, J. Approx. Theory, 207 (2016), 1–31 | DOI | MR | Zbl

[11] V. I. Danchenko, P. V. Chunaev, “Approximation by simple partial fractions and their generalizations”, J. Math. Sci., 176:6 (2011), 844–859 | DOI | MR | Zbl

[12] M. A. Komarov, “Kriterii nailuchshego ravnomernogo priblizheniya naiprosteishimi drobyami v terminakh alternansa. II”, Izv. RAN. Ser. matem., 81:3 (2017), 109–133 | DOI | MR | Zbl

[13] S. N. Bernshtein, Ekstremalnye svoistva polinomov i nailuchshee priblizhenie nepreryvnykh funktsii odnoi veschestvennoi peremennoi, GONTI, L.–M., 1937

[14] M. A. Komarov, “O nailuchshem priblizhenii veschestvennykh analiticheskikh funktsii naiprosteishimi drobyami”, Tezisy dokladov Mezhdunarodnoi konferentsii po matematicheskoi teorii upravleniya i mekhanike (Suzdal, 7–11 iyulya 2017), Vladimir, 2017, 84–85

[15] M. A. Komarov, “Kriterii nailuchshego ravnomernogo priblizheniya naiprosteishimi drobyami v terminakh alternansa”, Izv. RAN. Ser. matem., 79:3 (2015), 3–22 | DOI | MR | Zbl

[16] V. K. Dzyadyk, “Ob asimptotike diagonalnykh approksimatsii Pade funktsii $\sin z$, $\cos z$, $\operatorname{sh}z$ i $\operatorname{ch}z$”, Matem. sb., 108 (150):2 (1979), 247–267 | MR | Zbl

[17] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Gipergeometricheskaya funktsiya. Funktsii Lezhandra, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1973 | MR | Zbl