Estimates of the Best Approximation of Polynomials by Simple Partial Fractions
Matematičeskie zametki, Tome 104 (2018) no. 6, pp. 851-862

Voir la notice de l'article provenant de la source Math-Net.Ru

An asymptotics of the error of interpolation of real constants at Chebyshev nodes is obtained. Some well-known estimates of the best approximation by simple partial fractions (logarithmic derivatives of algebraic polynomials) of real constants in the closed interval $[-1,1]$ and complex constants in the unit disk are refined. As a consequence, new estimates of the best approximation of real polynomials on closed intervals of the real axis and of complex polynomials on arbitrary compact sets are obtained.
Keywords: simple partial fraction, approximation, estimate, best approximation.
@article{MZM_2018_104_6_a4,
     author = {M. A. Komarov},
     title = {Estimates of the {Best} {Approximation} of {Polynomials} by {Simple} {Partial} {Fractions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {851--862},
     publisher = {mathdoc},
     volume = {104},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a4/}
}
TY  - JOUR
AU  - M. A. Komarov
TI  - Estimates of the Best Approximation of Polynomials by Simple Partial Fractions
JO  - Matematičeskie zametki
PY  - 2018
SP  - 851
EP  - 862
VL  - 104
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a4/
LA  - ru
ID  - MZM_2018_104_6_a4
ER  - 
%0 Journal Article
%A M. A. Komarov
%T Estimates of the Best Approximation of Polynomials by Simple Partial Fractions
%J Matematičeskie zametki
%D 2018
%P 851-862
%V 104
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a4/
%G ru
%F MZM_2018_104_6_a4
M. A. Komarov. Estimates of the Best Approximation of Polynomials by Simple Partial Fractions. Matematičeskie zametki, Tome 104 (2018) no. 6, pp. 851-862. http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a4/