Lagrangian Manifolds Related to the Asymptotics of Hermite Polynomials
Matematičeskie zametki, Tome 104 (2018) no. 6, pp. 835-850.

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss two approaches that can be used to obtain the asymptotics of Hermite polynomials. The first, well-known approach is based on the representation of Hermite polynomials as solutions of a spectral problem for the harmonic oscillator Schrödinger equation. The second approach is based on a reduction of the finite-difference equation for the Hermite polynomials to a pseudodifferential equation. Associated with each of the approaches are Lagrangian manifolds that give the asymptotics of Hermite polynomials via the Maslov canonical operator.
Mots-clés : Hermite polynomial
Keywords: Lagrangian manifold, Maslov canonical operator, asymptotics, finite-difference equation, Schrödinger equation.
@article{MZM_2018_104_6_a3,
     author = {S. Yu. Dobrokhotov and A. V. Tsvetkova},
     title = {Lagrangian {Manifolds} {Related} to the {Asymptotics} of {Hermite} {Polynomials}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {835--850},
     publisher = {mathdoc},
     volume = {104},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a3/}
}
TY  - JOUR
AU  - S. Yu. Dobrokhotov
AU  - A. V. Tsvetkova
TI  - Lagrangian Manifolds Related to the Asymptotics of Hermite Polynomials
JO  - Matematičeskie zametki
PY  - 2018
SP  - 835
EP  - 850
VL  - 104
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a3/
LA  - ru
ID  - MZM_2018_104_6_a3
ER  - 
%0 Journal Article
%A S. Yu. Dobrokhotov
%A A. V. Tsvetkova
%T Lagrangian Manifolds Related to the Asymptotics of Hermite Polynomials
%J Matematičeskie zametki
%D 2018
%P 835-850
%V 104
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a3/
%G ru
%F MZM_2018_104_6_a3
S. Yu. Dobrokhotov; A. V. Tsvetkova. Lagrangian Manifolds Related to the Asymptotics of Hermite Polynomials. Matematičeskie zametki, Tome 104 (2018) no. 6, pp. 835-850. http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a3/

[1] D. N. Tulyakov, “Asimptotika tipa Plansherelya–Rotakha dlya reshenii lineinykh rekurrentnykh sootnoshenii s ratsionalnymi koeffitsientami”, Matem. sb., 201:9 (2010), 111–158 | DOI | MR | Zbl

[2] A. A. Fedotov, E. V. Schetka, “Kompleksnyi metod VKB dlya raznostnogo uravneniya Shredingera, potentsial kotorogo – trigonometricheskii polinom”, Algebra i analiz, 29:2 (2017), 193–219

[3] A. Fedotov, F. Klopp, “Difference equations, uniform quasiclassical asymptotics and Airy functions”, Proceedings of the International Conference Days on Diffraction 2018, St. Petersburg, 2018, 47–48

[4] G. Segë, Ortogonalnye mnogochleny, Fizmatgiz, M., 1962 | MR | Zbl

[5] G. Beitmen, A. Erdeii, Vysshie transtsendentnye funktsii. Funktsii Besselya, funktsii parabolicheskogo tsilindra, ortogonalnye mnogochleny, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1974 | MR | Zbl

[6] P. Deift, T. Kriecherbauer, K. T.-R. McLaughlin, S. Venakides, X. Zhou, “Strong asymptotics of orthogonal polynomials with respect to exponential weights”, Comm. Pure Appl. Math., 52:12 (1999), 1491–1552 | MR | Zbl

[7] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR | Zbl

[8] V. Maslov, “The characteristics of pseudo-differential operators and difference schemes”, Actes du Congrès International des Mathématiciens, Tome 2, Gauthier-Villars, Paris, 1971, 755–769 | MR

[9] V. P. Maslov, Teoriya vozmuschenii i asimptoticheskie metody, Izd-vo Mosk. un-ta, M., 1965

[10] V. P. Maslov, M. V. Fedoryuk, Kvaziklassicheskoe priblizhenie dlya uravnenii kvantovoi mekhaniki, Nauka, M., 1976 | MR | Zbl

[11] Dzh. Kheding, Vvedenie v metod fazovykh integralov (metod VKB), Mir, M., 1965 | MR | Zbl

[12] S. Yu. Slavyanov, Asimptotika reshenii odnomernogo uravneniya Shredingera, Izd-vo LGU, L., 1991 | MR

[13] M. V. Fedoryuk, Asimptotika: integraly i ryady, Spravochnaya matematicheskaya biblioteka, Nauka, M., 1987 | MR | Zbl

[14] S. Yu. Dobrokhotov, D. C. Minenkov, S. B. Shlosman, “Asimptotika volnovykh funktsii statsionarnogo uravneniya Shredingera v kamere Veilya”, TMF (to appear)