Simple Spectrum of Tensor Products and Typical Properties of Measure-Preserving Flows
Matematičeskie zametki, Tome 104 (2018) no. 6, pp. 942-944
Cet article a éte moissonné depuis la source Math-Net.Ru
Keywords:
ergodic flow, typical properties, tensor product, simple spectrum.
@article{MZM_2018_104_6_a12,
author = {I. V. Klimov},
title = {Simple {Spectrum} of {Tensor} {Products} and {Typical} {Properties} of {Measure-Preserving} {Flows}},
journal = {Matemati\v{c}eskie zametki},
pages = {942--944},
year = {2018},
volume = {104},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a12/}
}
I. V. Klimov. Simple Spectrum of Tensor Products and Typical Properties of Measure-Preserving Flows. Matematičeskie zametki, Tome 104 (2018) no. 6, pp. 942-944. http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a12/
[1] M. S. Lobanov, V. V. Ryzhikov, Matem. sb., 209:5 (2018), 62–73 | DOI | Zbl
[2] V. V. Ryzhikov, UMN, 61:4 (370) (2006), 197–198 | DOI | MR | Zbl
[3] V. V. Ryzhikov, Matem. zametki, 96:3 (2014), 432–439 | DOI | MR | Zbl
[4] I. S. Yaroslavtsev, Matem. zametki, 95:3 (2014), 479–480 | DOI | MR | Zbl
[5] R. A. Konev, V. V. Ryzhikov, Matem. zametki, 96:3 (2014), 383–392 | DOI | MR | Zbl
[6] K. Fraczek, J. Kulaga-Przymus, M. Lemanczyk, J. Anal. Math., 122:1 (2014), 163–227 | DOI | MR | Zbl
[7] A. I. Bashtanov, Math. Notes, 99:1 (2016), 9–23 | DOI | MR | Zbl
[8] S. V. Tikhonov, Matem. zametki, 95:2 (2014), 282–299 | DOI | MR | Zbl