Example of a System Whose Minimal Trajectory Attractor Does not Contain Solutions of the System
Matematičeskie zametki, Tome 104 (2018) no. 6, pp. 937-941
Cet article a éte moissonné depuis la source Math-Net.Ru
Keywords:
minimal trajectory attractor, global attractor, trajectory space, attractor of dynamical system.
@article{MZM_2018_104_6_a11,
author = {V. G. Zvyagin and N. N. Avdeev},
title = {Example of a {System} {Whose} {Minimal} {Trajectory} {Attractor} {Does} not {Contain} {Solutions} of the {System}},
journal = {Matemati\v{c}eskie zametki},
pages = {937--941},
year = {2018},
volume = {104},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a11/}
}
TY - JOUR AU - V. G. Zvyagin AU - N. N. Avdeev TI - Example of a System Whose Minimal Trajectory Attractor Does not Contain Solutions of the System JO - Matematičeskie zametki PY - 2018 SP - 937 EP - 941 VL - 104 IS - 6 UR - http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a11/ LA - ru ID - MZM_2018_104_6_a11 ER -
V. G. Zvyagin; N. N. Avdeev. Example of a System Whose Minimal Trajectory Attractor Does not Contain Solutions of the System. Matematičeskie zametki, Tome 104 (2018) no. 6, pp. 937-941. http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a11/
[1] V. V. Chepyzhov, M. I. Vishik, Attractors for Equations of Mathematical Physics, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl
[2] G. R. Sell, Y. You, Dynamics of Evolutionary Equations, Springer, New York, 2002 | MR | Zbl
[3] D. A. Vorotnikov, V. G. Zvyagin, J. Math. Fluid Mech., 10:1 (2008), 19–44 | DOI | MR | Zbl
[4] V. G. Zvyagin, D. A. Vorotnikov, Topological Approximation Methods for Evolutionary Problems of Nonlinear Hydrodynamics, Walter de Gruyter, Berlin, 2008 | MR
[5] V. G. Zvyagin, S. K. Kondratev, UMN, 69:5 (419) (2014), 81–156 | DOI | MR | Zbl