Example of a System Whose Minimal Trajectory Attractor Does not Contain Solutions of the System
Matematičeskie zametki, Tome 104 (2018) no. 6, pp. 937-941.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: minimal trajectory attractor, global attractor, trajectory space, attractor of dynamical system.
@article{MZM_2018_104_6_a11,
     author = {V. G. Zvyagin and N. N. Avdeev},
     title = {Example of a {System} {Whose} {Minimal} {Trajectory} {Attractor} {Does} not {Contain} {Solutions} of the {System}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {937--941},
     publisher = {mathdoc},
     volume = {104},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a11/}
}
TY  - JOUR
AU  - V. G. Zvyagin
AU  - N. N. Avdeev
TI  - Example of a System Whose Minimal Trajectory Attractor Does not Contain Solutions of the System
JO  - Matematičeskie zametki
PY  - 2018
SP  - 937
EP  - 941
VL  - 104
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a11/
LA  - ru
ID  - MZM_2018_104_6_a11
ER  - 
%0 Journal Article
%A V. G. Zvyagin
%A N. N. Avdeev
%T Example of a System Whose Minimal Trajectory Attractor Does not Contain Solutions of the System
%J Matematičeskie zametki
%D 2018
%P 937-941
%V 104
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a11/
%G ru
%F MZM_2018_104_6_a11
V. G. Zvyagin; N. N. Avdeev. Example of a System Whose Minimal Trajectory Attractor Does not Contain Solutions of the System. Matematičeskie zametki, Tome 104 (2018) no. 6, pp. 937-941. http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a11/

[1] V. V. Chepyzhov, M. I. Vishik, Attractors for Equations of Mathematical Physics, Amer. Math. Soc., Providence, RI, 2002 | MR | Zbl

[2] G. R. Sell, Y. You, Dynamics of Evolutionary Equations, Springer, New York, 2002 | MR | Zbl

[3] D. A. Vorotnikov, V. G. Zvyagin, J. Math. Fluid Mech., 10:1 (2008), 19–44 | DOI | MR | Zbl

[4] V. G. Zvyagin, D. A. Vorotnikov, Topological Approximation Methods for Evolutionary Problems of Nonlinear Hydrodynamics, Walter de Gruyter, Berlin, 2008 | MR

[5] V. G. Zvyagin, S. K. Kondratev, UMN, 69:5 (419) (2014), 81–156 | DOI | MR | Zbl