The Grassmann-like Manifold of Centered Planes
Matematičeskie zametki, Tome 104 (2018) no. 6, pp. 812-822.

Voir la notice de l'article provenant de la source Math-Net.Ru

Connections associated with the Grassmann-like manifold of centered planes in the multidimensional projective space are studied. A geometric interpretation of these connections in terms of maps and translations of equipping planes is given. An intrinsic analog of Norden's strong normalization of the manifold under consideration is constructed.
Keywords: Cartan's exterior form method, Grassmann manifold, Norden's normalization, average connection.
@article{MZM_2018_104_6_a1,
     author = {O. Belova},
     title = {The {Grassmann-like} {Manifold} of {Centered} {Planes}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {812--822},
     publisher = {mathdoc},
     volume = {104},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a1/}
}
TY  - JOUR
AU  - O. Belova
TI  - The Grassmann-like Manifold of Centered Planes
JO  - Matematičeskie zametki
PY  - 2018
SP  - 812
EP  - 822
VL  - 104
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a1/
LA  - ru
ID  - MZM_2018_104_6_a1
ER  - 
%0 Journal Article
%A O. Belova
%T The Grassmann-like Manifold of Centered Planes
%J Matematičeskie zametki
%D 2018
%P 812-822
%V 104
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a1/
%G ru
%F MZM_2018_104_6_a1
O. Belova. The Grassmann-like Manifold of Centered Planes. Matematičeskie zametki, Tome 104 (2018) no. 6, pp. 812-822. http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a1/

[1] S. P. Finikov, Metod vneshnikh form Kartana v differentsialnoi geometrii, GITTL, M.–L., 1948 | MR

[2] M. A. Akivis, B. A. Rozenfeld, Eli Kartan, MTsNMO, M., 2007

[3] L. E. Evtushik, Yu. G. Lumiste, N. M. Ostianu, A. P. Shirokov, “Differentsialno-geometricheskie struktury na mnogoobraziyakh”, Itogi nauki i tekhn. Ser. Probl. geom., 9, VINITI, M., 1979, 5–246 | MR | Zbl

[4] Yu. I. Shevchenko, “Priemy Lapteva i Lumiste zadaniya svyaznosti v glavnom rassloenii”, Differents. geom. mnogoobrazii figur, 37 (2006), 179–187 | MR | Zbl

[5] A. A. Borisenko, Yu. A. Nikolaevskii, “Mnogoobraziya Grassmana i grassmanov obraz podmnogoobrazii”, UMN, 46:2 (278) (1991), 41–83 | MR | Zbl

[6] Yu. G. Lumiste, “Indutsirovannye svyaznosti v pogruzhennykh proektivnykh i affinnykh rassloeniyakh”, Trudy po matematike i mekhanike, Uch. zap. Tartusskogo un-ta, 177, 1965, 6–41

[7] Sh. Chzhen, Kompleksnye mnogoobraziya, IL, M., 1961 | MR

[8] A. Bichara, G. Tallini, “On a characterization of the Grassmann manifold representing the planes in a projective space”, Combinatorial and Geometric Structures and Their Applications, Ann. Discrete Math., 63, North-Holland, Amsterdam, 1982, 129–149 | DOI | MR

[9] R. Di Gennaro, E. Ferrara Dentice, P. M. Lo Re, “On the Grassmann space representing the lines of an affine space”, Discrete Math., 312:3 (2012), 699–704 | DOI | MR | Zbl

[10] M. Harandi, R. Hartley, M. Salzmann, J. Trumpf, “Dictionary learning on Grassmann manifolds”, Algorithmic Advances in Riemannian Geometry and Applications, Springer, Cham, 2016, 145–172 | MR | Zbl

[11] D. Baralic, “How to understand Grassmannians?”, The Teaching of Mathematics, 14:2 (2011), 147–157

[12] M. M. Postnikov, Lektsii po geometrii. Semestr II. Lineinaya algebra i differentsialnaya geometriya, Nauka, M., 1979

[13] G. F. Laptev, “Differentsialnaya geometriya pogruzhennykh mnogoobrazii. Teoretiko-gruppovoi metod differentsialno-geometricheskikh issledovanii”, Tr. MMO, 2, GITTL, M., 1953, 275–382 | MR | Zbl

[14] Yu. I. Shevchenko, Osnascheniya tsentroproektivnykh mnogoobrazii, Kaliningradskii gos. un-t, Kaliningrad, 2000

[15] O. O. Belova, “Svyaznost $2$-go tipa v rassloenii, assotsiirovannom s grassmanopodobnym mnogoobraziem tsentrirovannykh ploskostei”, Differents. geom. mnogoobrazii figur, 38 (2007), 6–12 | MR | Zbl

[16] A. P. Norden, Prostranstva affinnoi svyaznosti, Nauka, M., 1976 | MR | Zbl

[17] B. N. Shapukov, Zadachi po gruppam Li i ikh prilozheniyam, NITs “RKhD”, M., 2002

[18] Yu. I. Shevchenko, “Parallelnye pereneseniya na poverkhnosti”, Differents. geom. mnogoobrazii figur, 10 (1979), 154–158 | Zbl

[19] K. V. Polyakova, “Parallelnye pereneseniya napravlenii vdol poverkhnosti proektivnogo prostranstva”, Differents. geom. mnogoobrazii figur, 27 (1996), 63–70 | Zbl

[20] A. V. Chakmazyan, “Svyaznost v normalnykh rassloeniyakh normalizovannogo podmnogoobraziya $V_m$ v $P_n$”, Itogi nauki i tekhn. Ser. Probl. geom., 10, VINITI, M., 1978, 55–74 | MR | Zbl

[21] G. F. Laptev, N. M. Ostianu, “Raspredeleniya $m$-mernykh lineinykh elementov v prostranstve proektivnoi svyaznosti. I”, Tr. Geom. semin., 3, VINITI, M., 1971, 49–94 | MR

[22] O. O. Belova, “Tenzor krivizny svyaznosti v rassloenii nad grassmanopodobnym mnogoobraziem tsentrirovannykh ploskostei”, Differents. geom. mnogoobrazii figur, 40 (2009), 18–28 | MR | Zbl