Optimal Recovery Methods for Solutions of the Dirichlet Problem that are Exact on Subspaces of Spherical Harmonics
Matematičeskie zametki, Tome 104 (2018) no. 6, pp. 803-811.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the optimal recovery problem for the solution of the Dirichlet problem for the Laplace equation in the unit $d$-dimensional ball on a sphere of radius $\rho$ from a finite collection of inaccurately specified Fourier coefficients of the solution on a sphere of radius $r$, $0$. The methods are required to be exact on certain subspaces of spherical harmonics.
Keywords: optimal recovery, Dirichlet problem, spherical harmonics.
Mots-clés : Laplace equation
@article{MZM_2018_104_6_a0,
     author = {E. A. Balova and K. Yu. Osipenko},
     title = {Optimal {Recovery} {Methods} for {Solutions} of the {Dirichlet} {Problem} that are {Exact} on {Subspaces} of {Spherical} {Harmonics}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {803--811},
     publisher = {mathdoc},
     volume = {104},
     number = {6},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a0/}
}
TY  - JOUR
AU  - E. A. Balova
AU  - K. Yu. Osipenko
TI  - Optimal Recovery Methods for Solutions of the Dirichlet Problem that are Exact on Subspaces of Spherical Harmonics
JO  - Matematičeskie zametki
PY  - 2018
SP  - 803
EP  - 811
VL  - 104
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a0/
LA  - ru
ID  - MZM_2018_104_6_a0
ER  - 
%0 Journal Article
%A E. A. Balova
%A K. Yu. Osipenko
%T Optimal Recovery Methods for Solutions of the Dirichlet Problem that are Exact on Subspaces of Spherical Harmonics
%J Matematičeskie zametki
%D 2018
%P 803-811
%V 104
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a0/
%G ru
%F MZM_2018_104_6_a0
E. A. Balova; K. Yu. Osipenko. Optimal Recovery Methods for Solutions of the Dirichlet Problem that are Exact on Subspaces of Spherical Harmonics. Matematičeskie zametki, Tome 104 (2018) no. 6, pp. 803-811. http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a0/

[1] S. M. Nikolskii, “K voprosu ob otsenkakh priblizhenii kvadraturnymi formulami”, UMN, 5:2 (36) (1950), 165–177 | MR | Zbl

[2] A. Sard, “Best approximative integration formulas; best approximation formulas”, Amer. J. Math., 71:1 (1949), 80–91 | DOI | MR | Zbl

[3] J. F. Traub, H. Woźniakowski, A General Theory of Optimal Algorithms, Academic Press, New York, 1980 | MR | Zbl

[4] L. Plaskota, Noisy Information and Computational Complexity, Cambridge Univ. Press, Cambridge, 1996 | MR | Zbl

[5] K. Yu. Osipenko, Optimal Recovery of Analytic Functions, Nova Science Publ., Huntington, NY, 2000

[6] G. G. Magaril-Ilyaev, V. M. Tikhomirov, Vypuklyi analiz i ego prilozheniya, Editorial URSS, M., 2011 | MR

[7] G. G. Magaril-Ilyaev, K. Yu. Osipenko, “Tochnost i optimalnost metodov vosstanovleniya funktsii po ikh spektru”, Funktsionalnye prostranstva, teoriya priblizhenii, smezhnye razdely matematicheskogo analiza, Tr. MIAN, 293, MAIK «Nauka/Interperiodika», M., 2016, 201–216 | DOI | MR

[8] K. Yu. Osipenko, “O vosstanovlenii resheniya zadachi Dirikhle po netochnym iskhodnym dannym”, Vladikavk. matem. zhurn., 6:4 (2004), 55–62 | MR | Zbl

[9] E. A. Balova, “Ob optimalnom vosstanovlenii reshenii zadachi Dirikhle po netochnym iskhodnym dannym”, Matem. zametki, 82:3 (2007), 323–334 | DOI | MR | Zbl

[10] I. Stein, G. Veis, Vvedenie v garmonicheskii analiz na evklidovykh prostranstvakh, Mir, M., 1974 | Zbl

[11] K. Yu. Osipenko, “Optimalnoe vosstanovlenie lineinykh operatorov v neevklidovykh metrikakh”, Matem. sb., 205:10 (2014), 77–106 | DOI | MR | Zbl