Optimal Recovery Methods for Solutions of the Dirichlet Problem that are Exact on Subspaces of Spherical Harmonics
Matematičeskie zametki, Tome 104 (2018) no. 6, pp. 803-811
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the optimal recovery problem for the solution of the Dirichlet problem for the Laplace equation in the unit $d$-dimensional ball on a sphere of radius $\rho$ from a finite collection of inaccurately specified Fourier coefficients of the solution on a sphere of radius $r$, $0$. The methods are required to be exact on certain subspaces of spherical harmonics.
Keywords:
optimal recovery, Dirichlet problem, spherical harmonics.
Mots-clés : Laplace equation
Mots-clés : Laplace equation
@article{MZM_2018_104_6_a0,
author = {E. A. Balova and K. Yu. Osipenko},
title = {Optimal {Recovery} {Methods} for {Solutions} of the {Dirichlet} {Problem} that are {Exact} on {Subspaces} of {Spherical} {Harmonics}},
journal = {Matemati\v{c}eskie zametki},
pages = {803--811},
publisher = {mathdoc},
volume = {104},
number = {6},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a0/}
}
TY - JOUR AU - E. A. Balova AU - K. Yu. Osipenko TI - Optimal Recovery Methods for Solutions of the Dirichlet Problem that are Exact on Subspaces of Spherical Harmonics JO - Matematičeskie zametki PY - 2018 SP - 803 EP - 811 VL - 104 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a0/ LA - ru ID - MZM_2018_104_6_a0 ER -
%0 Journal Article %A E. A. Balova %A K. Yu. Osipenko %T Optimal Recovery Methods for Solutions of the Dirichlet Problem that are Exact on Subspaces of Spherical Harmonics %J Matematičeskie zametki %D 2018 %P 803-811 %V 104 %N 6 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a0/ %G ru %F MZM_2018_104_6_a0
E. A. Balova; K. Yu. Osipenko. Optimal Recovery Methods for Solutions of the Dirichlet Problem that are Exact on Subspaces of Spherical Harmonics. Matematičeskie zametki, Tome 104 (2018) no. 6, pp. 803-811. http://geodesic.mathdoc.fr/item/MZM_2018_104_6_a0/