Lemniscate Zone and Distortion Theorems for Multivalent Functions.~II
Matematičeskie zametki, Tome 104 (2018) no. 5, pp. 700-707.

Voir la notice de l'article provenant de la source Math-Net.Ru

For meromorphic circumferentially mean $p$-valent functions, an analog of the classical distortion theorem is proved. It is shown that the existence of connected lemniscates of the function and a constraint on a cover of two given points lead to an inequality involving the Green energy of a discrete signed measure concentrated at the zeros of the given function and the absolute values of its derivatives at these zeros. This inequality is an equality for the superposition of a certain univalent function and an appropriate Zolotarev fraction.
Keywords: meromorphic function, $p$-valent function, lemniscate, symmetrization.
Mots-clés : Zolotarev fraction
@article{MZM_2018_104_5_a6,
     author = {V. N. Dubinin},
     title = {Lemniscate {Zone} and {Distortion} {Theorems} for {Multivalent} {Functions.~II}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {700--707},
     publisher = {mathdoc},
     volume = {104},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a6/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Lemniscate Zone and Distortion Theorems for Multivalent Functions.~II
JO  - Matematičeskie zametki
PY  - 2018
SP  - 700
EP  - 707
VL  - 104
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a6/
LA  - ru
ID  - MZM_2018_104_5_a6
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Lemniscate Zone and Distortion Theorems for Multivalent Functions.~II
%J Matematičeskie zametki
%D 2018
%P 700-707
%V 104
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a6/
%G ru
%F MZM_2018_104_5_a6
V. N. Dubinin. Lemniscate Zone and Distortion Theorems for Multivalent Functions.~II. Matematičeskie zametki, Tome 104 (2018) no. 5, pp. 700-707. http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a6/

[1] V. N. Dubinin, “Poyas lemniskat i teoremy iskazheniya dlya mnogolistnykh funktsii”, Analiticheskaya teoriya chisel i teoriya funktsii. 33, Zap. nauchn. sem. POMI, 458, POMI, SPb., 2017, 17–30

[2] C. Caratheodory, “Sur quelques applications du théorème de Landau–Picard”, Compt. Rend. Acad. Sci., 144 (1907), 1203–1206 | Zbl

[3] G. M. Goluzin, Geometricheskaya teoriya funktsii kompleksnogo peremennogo, Nauka, M., 1966 | MR | Zbl

[4] M. Biernacki, “Sur les fonctions en moyenne multivalentes”, Bull. Sci. Math. (2), 70 (1946), 51–76 | MR | Zbl

[5] W. K. Hayman, Multivalent Functions, Cambridge Tracts in Math., 100, Cambridge Univ. Press, Cambridge, 1994 | MR

[6] Dzh. Dzhenkins, Odnolistnye funktsii i konformnye otobrazheniya, IL, M., 1962 | Zbl

[7] V. N. Dubinin, “Krugovaya simmetrizatsiya kondensatorov na rimanovykh poverkhnostyakh”, Matem. sb., 206:1 (2015), 69–96 | DOI | MR | Zbl

[8] V. N. Dubinin, “Novaya versiya krugovoi simmetrizatsii s prilozheniyami k $p$-listnym funktsiyam”, Matem. sb., 203:7 (2012), 79–94 | DOI | MR | Zbl

[9] V. N. Dubinin, “Simmetrizatsiya kondensatorov i neravenstva dlya mnogolistnykh v kruge funktsii”, Matem. zametki, 94:6 (2013), 846–856 | DOI | MR | Zbl

[10] V. N. Dubinin, “Teoremy iskazheniya dlya funktsii, $p$-listnykh v srednem po okruzhnosti”, Analiticheskaya teoriya chisel i teoriya funktsii. 30, Zap. nauchn. sem. POMI, 440, POMI, SPb., 2015, 43–56 | MR

[11] N. S. Landkof, Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl

[12] V. N. Dubinin, “O logarifmicheskoi energii nulei i polyusov ratsionalnoi funktsii”, Sib. matem. zhurn., 57:6 (2016), 1255–1261 | DOI

[13] V. N. Dubinin, “Ekstremalnaya zadacha dlya proizvodnoi ratsionalnoi funktsii”, Matem. zametki, 100:5 (2016), 732–738 | DOI | MR

[14] N. I. Akhiezer, Elementy teorii ellipticheskikh funktsii, Nauka, M., 1970 | MR | Zbl

[15] V. N. Dubinin, “Neravenstva dlya modulei funktsii, $p$-listnykh v srednem po okruzhnosti”, Analiticheskaya teoriya chisel i teoriya funktsii. 29, Zap. nauchn. sem. POMI, 429, POMI, SPb., 2014, 44–54

[16] V. N. Dubinin, Condenser Capacities and Symmetrization in Geometric Function Theory, Birkhäuser, Basel, 2014 | MR | Zbl