On Selections from the Best $n$-Nets
Matematičeskie zametki, Tome 104 (2018) no. 5, pp. 694-699
Cet article a éte moissonné depuis la source Math-Net.Ru
The discontinuity of any selection from a best $n$-net for $n\ge 2$ in an arbitrary not strictly convex Banach space is proved. It is also proved that there is no Lipschitz selection on an arbitrary Banach space of dimension at least 2 whose unit sphere contains an attainable point of smoothness.
Keywords:
Banach space, selection, best $n$-net, Chebyshev center.
@article{MZM_2018_104_5_a5,
author = {Yu. Yu. Druzhinin},
title = {On {Selections} from the {Best} $n${-Nets}},
journal = {Matemati\v{c}eskie zametki},
pages = {694--699},
year = {2018},
volume = {104},
number = {5},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a5/}
}
Yu. Yu. Druzhinin. On Selections from the Best $n$-Nets. Matematičeskie zametki, Tome 104 (2018) no. 5, pp. 694-699. http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a5/
[1] A. L. Garkavi, “Teoriya nailuchshego priblizheniya v lineinykh normirovannykh prostranstvakh”, Itogi nauki. Ser. Matematika. Mat. anal., 1967, VINITI, M., 1969, 75–132 | MR | Zbl
[2] Yu. Yu. Druzhinin, “O suschestvovanii lipshitsevoi vyborki iz chebyshevskikh tsentrov”, Matem. sb., 204:5 (2013), 25–44 | DOI | MR | Zbl
[3] T. Bonnezen, V. Fenkhel, Teoriya vypuklykh tel, Fazis, M., 2002 | MR