On Selections from the Best $n$-Nets
Matematičeskie zametki, Tome 104 (2018) no. 5, pp. 694-699

Voir la notice de l'article provenant de la source Math-Net.Ru

The discontinuity of any selection from a best $n$-net for $n\ge 2$ in an arbitrary not strictly convex Banach space is proved. It is also proved that there is no Lipschitz selection on an arbitrary Banach space of dimension at least 2 whose unit sphere contains an attainable point of smoothness.
Keywords: Banach space, selection, best $n$-net, Chebyshev center.
@article{MZM_2018_104_5_a5,
     author = {Yu. Yu. Druzhinin},
     title = {On {Selections} from the {Best} $n${-Nets}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {694--699},
     publisher = {mathdoc},
     volume = {104},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a5/}
}
TY  - JOUR
AU  - Yu. Yu. Druzhinin
TI  - On Selections from the Best $n$-Nets
JO  - Matematičeskie zametki
PY  - 2018
SP  - 694
EP  - 699
VL  - 104
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a5/
LA  - ru
ID  - MZM_2018_104_5_a5
ER  - 
%0 Journal Article
%A Yu. Yu. Druzhinin
%T On Selections from the Best $n$-Nets
%J Matematičeskie zametki
%D 2018
%P 694-699
%V 104
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a5/
%G ru
%F MZM_2018_104_5_a5
Yu. Yu. Druzhinin. On Selections from the Best $n$-Nets. Matematičeskie zametki, Tome 104 (2018) no. 5, pp. 694-699. http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a5/