Contrast Structures in Problems for a Stationary Equation of Reaction-Diffusion-Advection Type with Discontinuous Nonlinearity
Matematičeskie zametki, Tome 104 (2018) no. 5, pp. 755-766.

Voir la notice de l'article provenant de la source Math-Net.Ru

A singularly perturbed boundary-value problem for a nonlinear stationary equation of reaction-diffusion-advection type is studied. A new class of problems with discontinuous advective and reactive terms is considered. The existence of contrast structures in problems of this type is proved, and an asymptotic approximation of the solution with an internal transition layer of arbitrary order of accuracy is obtained.
Mots-clés : problem of reaction-diffusion-advection type
Keywords: internal transition layer, asymptotic methods, problems with discontinuous nonlinearity.
@article{MZM_2018_104_5_a12,
     author = {Yafei Pan and Min Kan Ni and M. A. Davydova},
     title = {Contrast {Structures} in {Problems} for a {Stationary} {Equation} of {Reaction-Diffusion-Advection} {Type} with {Discontinuous} {Nonlinearity}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {755--766},
     publisher = {mathdoc},
     volume = {104},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a12/}
}
TY  - JOUR
AU  - Yafei Pan
AU  - Min Kan Ni
AU  - M. A. Davydova
TI  - Contrast Structures in Problems for a Stationary Equation of Reaction-Diffusion-Advection Type with Discontinuous Nonlinearity
JO  - Matematičeskie zametki
PY  - 2018
SP  - 755
EP  - 766
VL  - 104
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a12/
LA  - ru
ID  - MZM_2018_104_5_a12
ER  - 
%0 Journal Article
%A Yafei Pan
%A Min Kan Ni
%A M. A. Davydova
%T Contrast Structures in Problems for a Stationary Equation of Reaction-Diffusion-Advection Type with Discontinuous Nonlinearity
%J Matematičeskie zametki
%D 2018
%P 755-766
%V 104
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a12/
%G ru
%F MZM_2018_104_5_a12
Yafei Pan; Min Kan Ni; M. A. Davydova. Contrast Structures in Problems for a Stationary Equation of Reaction-Diffusion-Advection Type with Discontinuous Nonlinearity. Matematičeskie zametki, Tome 104 (2018) no. 5, pp. 755-766. http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a12/

[1] N. N. Nefedov, M. K. Ni, “Vnutrennie sloi v odnomernom uravnenii reaktsiya-diffuziya s razryvnym reaktivnym chlenom”, Zh. vychisl. matem. i matem. fiz., 55:12 (2015), 2042–2048 | DOI | MR

[2] N. T. Levashova, N. N. Nefedov, A. O. Orlov, “Statsionarnoe uravnenie reaktsii-diffuzii s razryvnym reaktivnym chlenom”, Zh. vychisl. matem. i matem. fiz., 57:5 (2017), 854–866 | DOI | MR

[3] A. B. Vasileva, V. F. Butuzov, N. N. Nefedov, “Singulyarno vozmuschennye zadachi s pogranichnymi i vnutrennimi sloyami”, Differentsialnye uravneniya i topologiya. I, Tr. MIAN, 268, MAIK «Nauka/Interperiodika», M., 2010, 268–283 | MR | Zbl

[4] N. N. Nefedov, M. A. Davydova, “Kontrastnye struktury v mnogomernykh singulyarno vozmuschennykh zadachakh reaktsiya–diffuziya–advektsiya”, Differents. uravneniya, 48:5 (2012), 738–748 | MR

[5] N. N. Nefedov, L. Recke, K. R. Schneider, “Existence and asymptotic stability of periodic solutions with an interior layer of reaction-advection-diffusion equations”, J. Math. Anal. Appl., 405:1 (2013), 90–103 | DOI | MR | Zbl

[6] M. A. Davydova, N. N. Nefedov, “Existence and stability of contrast structures in multidimensional singularly perturbed reaction-diffusion-advection problems”, Numerical Analysis and Its Applications, Lecture Notes in Comput. Sci., 10187, Springer, Cham, 2017, 277–285 | DOI | MR | Zbl

[7] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teorii singulyarnykh vozmuschenii, Aktualnye voprosy prikladnoi i vychislitelnoi matematiki, Vysshaya shkola, M., 1990 | MR | Zbl

[8] M. A. Davydova, “Suschestvovanie i ustoichivost reshenii s pogranichnymi sloyami v mnogomernykh singulyarno vozmuschennykh zadachakh reaktsiya-diffuziya-advektsiya”, Matem. zametki, 98:6 (2015), 853–864 | DOI | MR