Exact Calculation of Sums of the Lorentz Spaces~$\Lambda^{\alpha}$ and Applications
Matematičeskie zametki, Tome 104 (2018) no. 5, pp. 649-658.

Voir la notice de l'article provenant de la source Math-Net.Ru

The norm on the sum of Lorentz spaces endowed with norms equal to the products of the classical norm by some numbers is exactly calculated. The obtained result makes it possible to prove an extrapolation theorem for collections of Lorentz, Lebesgue, and Marcinkiewicz spaces with a sharp constant.
Keywords: sum of Lorentz spaces, extrapolation theorems.
@article{MZM_2018_104_5_a1,
     author = {E. I. Berezhnoi},
     title = {Exact {Calculation} of {Sums} of the {Lorentz} {Spaces~}$\Lambda^{\alpha}$ and {Applications}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {649--658},
     publisher = {mathdoc},
     volume = {104},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a1/}
}
TY  - JOUR
AU  - E. I. Berezhnoi
TI  - Exact Calculation of Sums of the Lorentz Spaces~$\Lambda^{\alpha}$ and Applications
JO  - Matematičeskie zametki
PY  - 2018
SP  - 649
EP  - 658
VL  - 104
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a1/
LA  - ru
ID  - MZM_2018_104_5_a1
ER  - 
%0 Journal Article
%A E. I. Berezhnoi
%T Exact Calculation of Sums of the Lorentz Spaces~$\Lambda^{\alpha}$ and Applications
%J Matematičeskie zametki
%D 2018
%P 649-658
%V 104
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a1/
%G ru
%F MZM_2018_104_5_a1
E. I. Berezhnoi. Exact Calculation of Sums of the Lorentz Spaces~$\Lambda^{\alpha}$ and Applications. Matematičeskie zametki, Tome 104 (2018) no. 5, pp. 649-658. http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a1/

[1] T. Iwaniec, C. Sbordone, “On the integrability of the Jacobian under minimal hypothesis”, Arch. Ration. Mech. Anal., 119 (1992), 129–143 | DOI | MR | Zbl

[2] A. Fiorenza, “Duality and reflexivity in grand Lebesgue spaces”, Collect. Math., 51 (2000), 131–148 | MR | Zbl

[3] A. Fiorenza, G. E. Karadzhov, “Grand and small Lebesgue spaces and their analogs”, Z. Anal. Anwendungen, 23:4 (2004), 657–681 | DOI | MR | Zbl

[4] C. Sbordone, “Grand Sobolev spaces and their applications to variational problems”, Matematiche (Catania), 51:2 (1996), 335–347 | MR | Zbl

[5] T. Iwaniec, C. Sbordone, “Weak minima of variational integrals”, J. Reine Angew. Math., 454 (1994), 143–161 | MR | Zbl

[6] A. Fiorenza, B. Gupta, P. Jain, “The maximal theorem for weighted Grand Lebesgue spaces”, Studia Math., 188:2 (2008), 123–133 | DOI | MR | Zbl

[7] B. Jawerth, M. Milman, “Extrapolation theory with applications”, Mem. Amer. Math. Soc., 89, no. 440, Amer. Math. Soc., Providence, RI, 1991, 1–82 | DOI | MR

[8] M. Milman, Extrapolation and Optimal Decomposition with Applications to Analysis, Lecture Notes in Math., 1580, Springer-Verlag, Berlin, 1994 | DOI | MR

[9] G. E. Karadzhov, M. Milman, “Extrapolation theory: new results and applications”, J. Approx. Theory, 133 (2005), 38–99 | DOI | MR | Zbl

[10] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR | Zbl

[11] C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, Boston, 1988 | MR | Zbl

[12] E. I. Berezhnoi, “Tochnaya teorema ekstrapolyatsii dlya prostranstv Lorentsa”, Sib. matem. zhurn., 54:3 (2013), 520–535 | MR

[13] E. I. Berezhnoi, A. A. Perfilev, “Tochnaya teorema ekstrapolyatsii dlya operatorov”, Funkts. analiz i ego pril., 34:3 (2000), 66–68 | DOI | MR | Zbl

[14] C. Capone, A. Fiorenza, M. Krbec, “On extrapolation blowups in the $L_p$ scale”, J. Inequal. Appl., 1 (2006), 1–18 | DOI | MR