On the Distribution of the First Component~$\eta_{t}$ of a Controlled Poisson Process $\{\eta_{t},\xi_{t}\}$, $t\ge 0$, without Boundary
Matematičeskie zametki, Tome 104 (2018) no. 5, pp. 643-648.

Voir la notice de l'article provenant de la source Math-Net.Ru

An ergodicity condition for the first component $\eta_{t}$ of a controlled Poisson process without boundary is found. The Laplace transform of the same component $\eta_{t}$, $t\ge 0$, is obtained from the given transition probabilities of the process $\{\eta_{t},\xi_{t}\}$, $t\ge 0$. It is essential that the given process $\{\eta_{t},\xi_{t}\}$, $t\ge 0$, is a Markov process homogeneous in the second component.
Mots-clés : Poisson process, Laplace transform.
Keywords: ergodicity condition, homogeneous Markov process
@article{MZM_2018_104_5_a0,
     author = {T. M. Aliyev and K. K. Omarova},
     title = {On the {Distribution} of the {First} {Component~}$\eta_{t}$ of a {Controlled} {Poisson} {Process} $\{\eta_{t},\xi_{t}\}$, $t\ge 0$, without {Boundary}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {643--648},
     publisher = {mathdoc},
     volume = {104},
     number = {5},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a0/}
}
TY  - JOUR
AU  - T. M. Aliyev
AU  - K. K. Omarova
TI  - On the Distribution of the First Component~$\eta_{t}$ of a Controlled Poisson Process $\{\eta_{t},\xi_{t}\}$, $t\ge 0$, without Boundary
JO  - Matematičeskie zametki
PY  - 2018
SP  - 643
EP  - 648
VL  - 104
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a0/
LA  - ru
ID  - MZM_2018_104_5_a0
ER  - 
%0 Journal Article
%A T. M. Aliyev
%A K. K. Omarova
%T On the Distribution of the First Component~$\eta_{t}$ of a Controlled Poisson Process $\{\eta_{t},\xi_{t}\}$, $t\ge 0$, without Boundary
%J Matematičeskie zametki
%D 2018
%P 643-648
%V 104
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a0/
%G ru
%F MZM_2018_104_5_a0
T. M. Aliyev; K. K. Omarova. On the Distribution of the First Component~$\eta_{t}$ of a Controlled Poisson Process $\{\eta_{t},\xi_{t}\}$, $t\ge 0$, without Boundary. Matematičeskie zametki, Tome 104 (2018) no. 5, pp. 643-648. http://geodesic.mathdoc.fr/item/MZM_2018_104_5_a0/

[1] I. I. Ezhov, A. V. Skorokhod, “Markovskie protsessy, odnorodnye po vtoroi komponente. I”, Teoriya veroyatn. i ee primen., 14:1 (1969), 3–14 | MR | Zbl

[2] I. I. Ezhov, A. V. Skorokhod, “Markovskie protsessy odnorodnye po vtoroi komponente. II”, Teoriya veroyatn. i ee primen., 14:4 (1969), 679–692 | MR | Zbl

[3] F. R. Gantmakher, Teoriya matrits, Nauka, M., 1988 | MR | Zbl

[4] A. A. Borovkov, Veroyatnostnye protsessy v teorii massovogo obsluzhivaniya, Nauka, M., 1972 | MR | Zbl

[5] A. A. Borovkov, “O bluzhdanii v polose s zaderzhivayuschimi granitsami”, Matem. zametki, 17:4 (1975), 649–657 | MR | Zbl

[6] D. K. Fadeev, I. S. Sominskii, Sbornik zadach po vysshei algebre, GITTL, M., 1961 | MR

[7] T. V. Aliyev, E. A. Ibayev, V. M. Mamedov, “On controlled Poisson processes”, TWMS J. Appl. Eng. Math., 4:2 (2014), 252–258 | MR | Zbl