On an Inverse Optimization Spectral Problem and a Corresponding Nonlinear Boundary-Value Problem
Matematičeskie zametki, Tome 104 (2018) no. 4, pp. 621-625.

Voir la notice de l'article provenant de la source Math-Net.Ru

Keywords: inverse spectral problem, nonlinear boundary-value problem, variational methods.
@article{MZM_2018_104_4_a9,
     author = {N. F. Valeev and Ya. Sh. Il'yasov},
     title = {On an {Inverse} {Optimization} {Spectral} {Problem} and a {Corresponding} {Nonlinear} {Boundary-Value} {Problem}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {621--625},
     publisher = {mathdoc},
     volume = {104},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a9/}
}
TY  - JOUR
AU  - N. F. Valeev
AU  - Ya. Sh. Il'yasov
TI  - On an Inverse Optimization Spectral Problem and a Corresponding Nonlinear Boundary-Value Problem
JO  - Matematičeskie zametki
PY  - 2018
SP  - 621
EP  - 625
VL  - 104
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a9/
LA  - ru
ID  - MZM_2018_104_4_a9
ER  - 
%0 Journal Article
%A N. F. Valeev
%A Ya. Sh. Il'yasov
%T On an Inverse Optimization Spectral Problem and a Corresponding Nonlinear Boundary-Value Problem
%J Matematičeskie zametki
%D 2018
%P 621-625
%V 104
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a9/
%G ru
%F MZM_2018_104_4_a9
N. F. Valeev; Ya. Sh. Il'yasov. On an Inverse Optimization Spectral Problem and a Corresponding Nonlinear Boundary-Value Problem. Matematičeskie zametki, Tome 104 (2018) no. 4, pp. 621-625. http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a9/

[1] F. V. Atkinson, Diskretnye i nepreryvnye granichnye zadachi, Mir, 1968 | MR

[2] A. M. Savchuk, A. A. Shkalikov, Tr. MMO, 64, 2003, 159–212 | MR | Zbl

[3] V. Ambarzumian, Z. Physik, 53:9 (1929), 690–695 | Zbl

[4] G. Borg, Acta Math., 78:1 (1946), 1–96 | DOI | MR

[5] I. M. Gelfand, B. M. Levitan, Izv. AN SSSR. Ser. matem., 15:4 (1951), 309–360 | MR | Zbl

[6] H. Hochstadt, Comm. Pure Appl. Math., 26:7 (1973), 15–29 | MR

[7] M. Marletta, R. Weikard, Inverse Problems, 21:4 (2005), 1275–1290 | DOI | MR

[8] J. Pöschel, E. Trubowitz, Inverse Spectral Theory, Pure Appl. Math., 130, Academic Press, Boston, MA, 1987 | MR

[9] A. M. Savchuk, Matem. zametki, 99:5 (2016), 715–731 | DOI | MR

[10] A. M. Savchuk, A. A. Shkalikov, Special Theory and Differential Equations, Amer. Math. Soc. Transl. Ser. 2, 233, Amer. Math. Soc., Providence, RI, 2014, 211–224 | MR

[11] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 2015 | MR

[12] H. Brezis, L. Oswald, Nonlinear Anal., 10:1 (1986), 55–64 | DOI | MR

[13] V. A. Vinokurov, Differents. uravneniya, 41:6 (2005), 730–738 | MR

[14] L. A. Lyusternik, Matem. sb., 41:3 (1934), 390–401 | Zbl