On an Elliptic Differential-Difference Equation with Nonsymmetric Shift Operator
Matematičeskie zametki, Tome 104 (2018) no. 4, pp. 604-620.

Voir la notice de l'article provenant de la source Math-Net.Ru

An essentially nonlinear equation containing the product of the $p$-Laplacian and a nonsymmetric difference operator is considered. Sufficient conditions guaranteeing the coercivity and pseudomonotonicity of the corresponding nonlinear difference-differential operator are obtained. The existence of a generalized solution of the Dirichlet problem for the nonlinear equation under consideration is proved.
Keywords: essentially nonlinear elliptic functional-differential equation, pseudomonotone operator, accretive operator.
@article{MZM_2018_104_4_a8,
     author = {O. V. Solonukha},
     title = {On an {Elliptic} {Differential-Difference} {Equation} with {Nonsymmetric} {Shift} {Operator}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {604--620},
     publisher = {mathdoc},
     volume = {104},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a8/}
}
TY  - JOUR
AU  - O. V. Solonukha
TI  - On an Elliptic Differential-Difference Equation with Nonsymmetric Shift Operator
JO  - Matematičeskie zametki
PY  - 2018
SP  - 604
EP  - 620
VL  - 104
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a8/
LA  - ru
ID  - MZM_2018_104_4_a8
ER  - 
%0 Journal Article
%A O. V. Solonukha
%T On an Elliptic Differential-Difference Equation with Nonsymmetric Shift Operator
%J Matematičeskie zametki
%D 2018
%P 604-620
%V 104
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a8/
%G ru
%F MZM_2018_104_4_a8
O. V. Solonukha. On an Elliptic Differential-Difference Equation with Nonsymmetric Shift Operator. Matematičeskie zametki, Tome 104 (2018) no. 4, pp. 604-620. http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a8/

[1] Yu. A. Dubinskii, “Nelineinye ellipticheskie i parabolicheskie uravneniya”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat., 9, VINITI, M., 1976, 5–130 | Zbl

[2] Zh.-L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR | Zbl

[3] P. Hartman, G. Stampacchia, “On some nonlinear elliptic differential functional equations”, Acta Math., 115 (1966), 271–310 | DOI | MR

[4] A. L. Skubachevskii, “Kraevye zadachi dlya ellipticheskikh funktsionalno-differentsialnykh uravnenii i ikh prilozheniya”, UMN, 71:5 (431) (2016), 3–112 | DOI | MR | Zbl

[5] A. Skubachevskii, “The first boundary value problem for strongly elliptic differential-difference equations”, J. Differential Equations, 63:3 (1986), 332–361 | DOI | MR

[6] A. L. Skubachevskii, Elliptic Functional Differential Equations and Applications, Oper. Theory Adv. Appl., 91, Birkhäuser, Basel, 1997 | MR

[7] O. V. Solonukha, “Ob odnom klasse suschestvenno nelineinykh ellipticheskikh differentsialno-raznostnykh uravnenii”, Teoriya funktsii i uravneniya matematicheskoi fiziki, Tr. MIAN, 283, MAIK «Nauka/Interperiodika», M., 2013, 233–251 | DOI | MR

[8] O. V. Solonukha, “On nonlinear and quasilinear elliptic functional differential equations”, Discrete Contin. Dyn. Syst. Ser. S, 9:3 (2016), 869–893 | DOI | MR

[9] O. V. Solonukha, “Ob odnoi nelineinoi nelokalnoi zadache ellipticheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 57:3 (2017), 417–428 | DOI

[10] Kh. Gaevskii, K. Greger, K. Zakharias, Nelineinye operatornye uravneniya i operatornye differentsialnye uravneniya, Mir, M., 1978 | MR | Zbl

[11] L. A. Lyusternik, V. I. Sobolev, Elementy funktsionalnogo analiza, Nauka, M., 1965 | MR | Zbl

[12] V. M. Kadets, Kurs funktsionalnogo analiza, Kharkovskii nats. un-t im. V. N. Karazina, Kharkov, 2004 | MR