Pseudodifferential Operators on Besov Spaces of Variable Smoothness
Matematičeskie zametki, Tome 104 (2018) no. 4, pp. 571-587.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider pseudodifferential operators of variable order acting on Besov spaces of variable smoothness. We prove the boundedness and compactness of such operators and study the Fredholm property of pseudodifferential operators of variable order with symbols slowly oscillating at infinity on weighted Besov spaces with variable smoothness.
Keywords: pseudodifferential operators, variable smoothness, Fredholm theory, exponential estimates.
Mots-clés : Besov spaces
@article{MZM_2018_104_4_a6,
     author = {V. D. Kryakvin and V. S. Rabinovich},
     title = {Pseudodifferential {Operators} on {Besov} {Spaces} of {Variable} {Smoothness}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {571--587},
     publisher = {mathdoc},
     volume = {104},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a6/}
}
TY  - JOUR
AU  - V. D. Kryakvin
AU  - V. S. Rabinovich
TI  - Pseudodifferential Operators on Besov Spaces of Variable Smoothness
JO  - Matematičeskie zametki
PY  - 2018
SP  - 571
EP  - 587
VL  - 104
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a6/
LA  - ru
ID  - MZM_2018_104_4_a6
ER  - 
%0 Journal Article
%A V. D. Kryakvin
%A V. S. Rabinovich
%T Pseudodifferential Operators on Besov Spaces of Variable Smoothness
%J Matematičeskie zametki
%D 2018
%P 571-587
%V 104
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a6/
%G ru
%F MZM_2018_104_4_a6
V. D. Kryakvin; V. S. Rabinovich. Pseudodifferential Operators on Besov Spaces of Variable Smoothness. Matematičeskie zametki, Tome 104 (2018) no. 4, pp. 571-587. http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a6/

[1] V. S. Rabinovich, “Fredholm property of pseudo-differential operators on weighted Hölder–Zygmund spaces”, Pseudo-Differential Operators and Related Topics, Oper. Theory Adv. Appl., 164, Birkhäuser, Basel, 2006, 95–114 | DOI | MR

[2] V. Kryakvin, V. Rabinovich, “Pseudodifferential operators in weighted Hölder–Zygmund spaces of variable smoothness”, Large Truncated Toeplitz Matrices, Toeplitz Operators, and Related Topics, Oper. Theory Adv. Appl., 259, Birkhäuser, Cham, 2017, 511–531 | DOI | MR

[3] A. Unterberger, J. Bokobza, “Sur les opérateurs pseudo-différentiels d'ordre variable”, C. R. Acad. Sci. Paris, 261 (1965), 2271–2273 | MR

[4] L. R. Volevich, V. M. Kagan, “Psevdodifferentsialnye gipoellipticheskie operatory v teorii funktsionalnykh prostranstv”, Tr. MMO, 20, Izd-vo Mosk. un-ta, M., 1969, 241–275 | MR | Zbl

[5] O. V. Besov, “O prostranstvakh funktsii peremennoi gladkosti, opredelyaemykh psevdodifferentsialnymi operatorami”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. Chast 18, Tr. MIAN, 227, Nauka, MAIK «Nauka/Interperiodika», M., 1999, 56–74 | MR | Zbl

[6] O. V. Besov, “Ekvivalentnye normirovki prostranstv funktsii peremennoi gladkosti”, Funktsionalnye prostranstva, priblizheniya, differentsialnye uravneniya, Tr. MIAN, 243, Nauka, MAIK «Nauka/Interperiodika», M., 2003, 87–95 | MR | Zbl

[7] O. V. Besov, “Interpolyatsiya, vlozhenie i prodolzhenie prostranstv funktsii peremennoi gladkosti”, Issledovaniya po teorii funktsii i differentsialnym uravneniyam, Tr. MIAN, 248, Nauka, MAIK «Nauka/Interperiodika», M., 2005, 52–63 | MR | Zbl

[8] H.-G. Leopold, “On Besov spaces of variable order of differentiation”, Z. Anal. Anwendungen, 8:1 (1989), 69–82 | DOI | MR

[9] N. Jacob, H.-G. Leopold, “Pseudo differential operator s with variable order of differentiation generating Feller semigroups”, Integral Equations Operator Theory, 17:4 (1993), 544–553 | DOI | MR

[10] B. Beauzamy, “Espaces de Sobolev et de Besov d'ordre variable definis sur $L_p$”, C. R. Acad. Sci. Paris. Ser. A, 274 (1972), 1935–1938 | MR

[11] L. Diening, P. Harjulehto, P. Hästö, M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math., 2017, Springer-Verlag, Berlin, 2011 | DOI | MR

[12] A. Almeida, S. Samko, “Pointwise inequalities in variable Sobolev spaces and applications”, Z. Anal. Anwend., 26:2 (2007), 179–193 | DOI | MR

[13] A. Almeida, P. Hästö, “Besov spaces with variable smoothness and integrability”, J. Funct. Anal., 258:5 (2010), 1628–1655 | DOI | MR

[14] V. Rabinovich, S. Samko, “Boundedness and Fredholmness of pseudodifferential operators in variable exponent spaces”, Integral Equations Operator Theory, 60:4 (2008), 507–537 | DOI | MR

[15] V. S. Rabinovich, S. G. Samko, “Suschestvennyi spektr psevdodifferentsialnykh operatorov v prostranstvakh Soboleva s peremennoi gladkostyu i peremennymi pokazatelyami Lebega”, Dokl. AN, 417:2 (2007), 167–170 | MR

[16] N. K. Karapetians, A. I. Ginzburg, “Fractional integrals and singular integrals in the Hölder classes of variable order”, Integral Transforms Spec. Funct., 2:2 (1994), 91–106 | MR

[17] V. D. Kryakvin, “Ob ogranichennosti psevdodifferentsialnykh operatorov v prostranstvakh Geldera–Zigmunda peremennogo poryadka”, Sib. matem. zhurn., 55:6 (2014), 1315–1327 | MR

[18] D. Yang, C. Zhuo, W. Yuan, “Besov-type spaces with variable smoothness and integrability”, J. Funct. Anal., 269:6 (2015), 1840–1898 | DOI | MR

[19] V. S. Rabinovich, “Pseudodifferential operators with analytic symbols and estimates for eigenfunctions of Schrödinger operators”, Z. Anal. Anwend., 21:2 (2002), 351–370 | DOI | MR

[20] L. Hörmander, The Analysis of Linear Partial Differential Operators Vol. 1. Distribution Theory and Fourier Analysis, Springer-Verlag, Berlin, 1983 ; Vol. 2. Differential Operators with Constant Coefficients, Springer-Verlag, Berlin, 1983 ; Vol. 3. Pseudodifferential Operators, Springer-Verlag, Berlin, 1985 ; Vol. 4. Fourier Integral Operators, Springer-Verlag, Berlin, 1985 | MR | MR | MR | MR

[21] H. Kumano-go, Pseudodifferential Operators, MIT Presss, Cambrige, MA, 1981 | MR

[22] M. A. Shubin, Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, M., 1978 | MR | Zbl

[23] M. E. Taylor, Pseudodifferential Operators, Princeton Univ. Press, 1981 | MR

[24] J. Peetre, New Thoughts on Besov Spaces, Duke Univ., Durhan, NC, 1976 | MR

[25] H. Triebel, Theory of Function Spaces, Birkhäuser Verlag, 1983 | MR

[26] H. Triebel, Theory of Function Spaces. II, Birkhäuser, Basel, 1992 | MR

[27] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993 | MR

[28] R. A. Adams, J. J. F. Fournier, Sobolev Spaces, Elsevier, Amsterdam, 2003 | MR

[29] J. Bergh, J. Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin, 1976 | MR

[30] A. Persson, “Compact linear mappings between interpolation spaces”, Ark. Mat., 5 (1964), 215–219 | DOI | MR

[31] M. A. Krasnoselskii, “O teoreme Rissa”, Dokl. AN SSSR, 131 (1960), 246–248 | MR

[32] I. Ts. Gokhberg, I. A. Feldman, Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971 | MR | Zbl