Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_104_4_a6, author = {V. D. Kryakvin and V. S. Rabinovich}, title = {Pseudodifferential {Operators} on {Besov} {Spaces} of {Variable} {Smoothness}}, journal = {Matemati\v{c}eskie zametki}, pages = {571--587}, publisher = {mathdoc}, volume = {104}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a6/} }
TY - JOUR AU - V. D. Kryakvin AU - V. S. Rabinovich TI - Pseudodifferential Operators on Besov Spaces of Variable Smoothness JO - Matematičeskie zametki PY - 2018 SP - 571 EP - 587 VL - 104 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a6/ LA - ru ID - MZM_2018_104_4_a6 ER -
V. D. Kryakvin; V. S. Rabinovich. Pseudodifferential Operators on Besov Spaces of Variable Smoothness. Matematičeskie zametki, Tome 104 (2018) no. 4, pp. 571-587. http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a6/
[1] V. S. Rabinovich, “Fredholm property of pseudo-differential operators on weighted Hölder–Zygmund spaces”, Pseudo-Differential Operators and Related Topics, Oper. Theory Adv. Appl., 164, Birkhäuser, Basel, 2006, 95–114 | DOI | MR
[2] V. Kryakvin, V. Rabinovich, “Pseudodifferential operators in weighted Hölder–Zygmund spaces of variable smoothness”, Large Truncated Toeplitz Matrices, Toeplitz Operators, and Related Topics, Oper. Theory Adv. Appl., 259, Birkhäuser, Cham, 2017, 511–531 | DOI | MR
[3] A. Unterberger, J. Bokobza, “Sur les opérateurs pseudo-différentiels d'ordre variable”, C. R. Acad. Sci. Paris, 261 (1965), 2271–2273 | MR
[4] L. R. Volevich, V. M. Kagan, “Psevdodifferentsialnye gipoellipticheskie operatory v teorii funktsionalnykh prostranstv”, Tr. MMO, 20, Izd-vo Mosk. un-ta, M., 1969, 241–275 | MR | Zbl
[5] O. V. Besov, “O prostranstvakh funktsii peremennoi gladkosti, opredelyaemykh psevdodifferentsialnymi operatorami”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. Chast 18, Tr. MIAN, 227, Nauka, MAIK «Nauka/Interperiodika», M., 1999, 56–74 | MR | Zbl
[6] O. V. Besov, “Ekvivalentnye normirovki prostranstv funktsii peremennoi gladkosti”, Funktsionalnye prostranstva, priblizheniya, differentsialnye uravneniya, Tr. MIAN, 243, Nauka, MAIK «Nauka/Interperiodika», M., 2003, 87–95 | MR | Zbl
[7] O. V. Besov, “Interpolyatsiya, vlozhenie i prodolzhenie prostranstv funktsii peremennoi gladkosti”, Issledovaniya po teorii funktsii i differentsialnym uravneniyam, Tr. MIAN, 248, Nauka, MAIK «Nauka/Interperiodika», M., 2005, 52–63 | MR | Zbl
[8] H.-G. Leopold, “On Besov spaces of variable order of differentiation”, Z. Anal. Anwendungen, 8:1 (1989), 69–82 | DOI | MR
[9] N. Jacob, H.-G. Leopold, “Pseudo differential operator s with variable order of differentiation generating Feller semigroups”, Integral Equations Operator Theory, 17:4 (1993), 544–553 | DOI | MR
[10] B. Beauzamy, “Espaces de Sobolev et de Besov d'ordre variable definis sur $L_p$”, C. R. Acad. Sci. Paris. Ser. A, 274 (1972), 1935–1938 | MR
[11] L. Diening, P. Harjulehto, P. Hästö, M. Ruzicka, Lebesgue and Sobolev Spaces with Variable Exponents, Lecture Notes in Math., 2017, Springer-Verlag, Berlin, 2011 | DOI | MR
[12] A. Almeida, S. Samko, “Pointwise inequalities in variable Sobolev spaces and applications”, Z. Anal. Anwend., 26:2 (2007), 179–193 | DOI | MR
[13] A. Almeida, P. Hästö, “Besov spaces with variable smoothness and integrability”, J. Funct. Anal., 258:5 (2010), 1628–1655 | DOI | MR
[14] V. Rabinovich, S. Samko, “Boundedness and Fredholmness of pseudodifferential operators in variable exponent spaces”, Integral Equations Operator Theory, 60:4 (2008), 507–537 | DOI | MR
[15] V. S. Rabinovich, S. G. Samko, “Suschestvennyi spektr psevdodifferentsialnykh operatorov v prostranstvakh Soboleva s peremennoi gladkostyu i peremennymi pokazatelyami Lebega”, Dokl. AN, 417:2 (2007), 167–170 | MR
[16] N. K. Karapetians, A. I. Ginzburg, “Fractional integrals and singular integrals in the Hölder classes of variable order”, Integral Transforms Spec. Funct., 2:2 (1994), 91–106 | MR
[17] V. D. Kryakvin, “Ob ogranichennosti psevdodifferentsialnykh operatorov v prostranstvakh Geldera–Zigmunda peremennogo poryadka”, Sib. matem. zhurn., 55:6 (2014), 1315–1327 | MR
[18] D. Yang, C. Zhuo, W. Yuan, “Besov-type spaces with variable smoothness and integrability”, J. Funct. Anal., 269:6 (2015), 1840–1898 | DOI | MR
[19] V. S. Rabinovich, “Pseudodifferential operators with analytic symbols and estimates for eigenfunctions of Schrödinger operators”, Z. Anal. Anwend., 21:2 (2002), 351–370 | DOI | MR
[20] L. Hörmander, The Analysis of Linear Partial Differential Operators Vol. 1. Distribution Theory and Fourier Analysis, Springer-Verlag, Berlin, 1983 ; Vol. 2. Differential Operators with Constant Coefficients, Springer-Verlag, Berlin, 1983 ; Vol. 3. Pseudodifferential Operators, Springer-Verlag, Berlin, 1985 ; Vol. 4. Fourier Integral Operators, Springer-Verlag, Berlin, 1985 | MR | MR | MR | MR
[21] H. Kumano-go, Pseudodifferential Operators, MIT Presss, Cambrige, MA, 1981 | MR
[22] M. A. Shubin, Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, M., 1978 | MR | Zbl
[23] M. E. Taylor, Pseudodifferential Operators, Princeton Univ. Press, 1981 | MR
[24] J. Peetre, New Thoughts on Besov Spaces, Duke Univ., Durhan, NC, 1976 | MR
[25] H. Triebel, Theory of Function Spaces, Birkhäuser Verlag, 1983 | MR
[26] H. Triebel, Theory of Function Spaces. II, Birkhäuser, Basel, 1992 | MR
[27] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993 | MR
[28] R. A. Adams, J. J. F. Fournier, Sobolev Spaces, Elsevier, Amsterdam, 2003 | MR
[29] J. Bergh, J. Löfström, Interpolation Spaces. An Introduction, Springer-Verlag, Berlin, 1976 | MR
[30] A. Persson, “Compact linear mappings between interpolation spaces”, Ark. Mat., 5 (1964), 215–219 | DOI | MR
[31] M. A. Krasnoselskii, “O teoreme Rissa”, Dokl. AN SSSR, 131 (1960), 246–248 | MR
[32] I. Ts. Gokhberg, I. A. Feldman, Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971 | MR | Zbl