On a Series Representation for Integral Kernels of Transmutation Operators for Perturbed Bessel Equations
Matematičeskie zametki, Tome 104 (2018) no. 4, pp. 552-570.

Voir la notice de l'article provenant de la source Math-Net.Ru

A representation for the kernel of the transmutation operator relating a perturbed Bessel equation to the unperturbed one is obtained in the form of a functional series with coefficients calculated by a recurrent integration procedure. New properties of the transmutation kernel are established. A new representation of a regular solution of a perturbed Bessel equation is given, which admits a uniform error bound with respect to the spectral parameter for partial sums of the series. A numerical illustration of the application of the obtained result to solve Dirichlet spectral problems is presented.
Keywords: perturbed Bessel equation, transmutation operators, Neumann series of Bessel functions, Erdelyi–Kober operators, Jacobi polynomials, spectral problems.
@article{MZM_2018_104_4_a5,
     author = {V. V. Kravchenko and E. L. Shishkina and S. M. Torba},
     title = {On a {Series} {Representation} for {Integral} {Kernels} of {Transmutation} {Operators} for {Perturbed} {Bessel} {Equations}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {552--570},
     publisher = {mathdoc},
     volume = {104},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a5/}
}
TY  - JOUR
AU  - V. V. Kravchenko
AU  - E. L. Shishkina
AU  - S. M. Torba
TI  - On a Series Representation for Integral Kernels of Transmutation Operators for Perturbed Bessel Equations
JO  - Matematičeskie zametki
PY  - 2018
SP  - 552
EP  - 570
VL  - 104
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a5/
LA  - ru
ID  - MZM_2018_104_4_a5
ER  - 
%0 Journal Article
%A V. V. Kravchenko
%A E. L. Shishkina
%A S. M. Torba
%T On a Series Representation for Integral Kernels of Transmutation Operators for Perturbed Bessel Equations
%J Matematičeskie zametki
%D 2018
%P 552-570
%V 104
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a5/
%G ru
%F MZM_2018_104_4_a5
V. V. Kravchenko; E. L. Shishkina; S. M. Torba. On a Series Representation for Integral Kernels of Transmutation Operators for Perturbed Bessel Equations. Matematičeskie zametki, Tome 104 (2018) no. 4, pp. 552-570. http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a5/

[1] V. Ya. Volk, “O formulakh obrascheniya dlya differentsialnogo uravneniya s osobennostyu pri $x=0$”, UMN, 8:4 (56) (1953), 141–151 | MR | Zbl

[2] V. V. Stashevskaya, “Ob obratnoi zadache spektralnogo analiza dlya nekotorogo klassa differentsialnykh uravnenii”, Dokl. AN SSSR, 93 (1953), 409–411 | MR

[3] V. V. Stashevskaya, “Ob obratnoi zadache spektralnogo analiza dlya differentsialnogo operatora s osobennostyu v nule”, Zapiski matematicheskogo otdeleniya fiziko-matematicheskogo fakulteta i Kharkovskogo matematicheskogo obschestva. Ser. 4. T. 25, Uchenye zapiski Kharkovskogo gos. un-ta im. A. M. Gorkogo, 80, Kharkovskii gos. un-t im. A. M. Gorkogo, Kharkov, 1957, 49–86

[4] K. Chadan, P. C. Sabatier, Inverse Problems in Quantum Scattering Theory, Springer-Verlag, New York, 1989 | MR

[5] H. Chebli, A. Fitouhi, M. M. Hamza, “Expansion in series of Bessel functions and transmutations for perturbed Bessel operators”, J. Math. Anal. Appl., 181:3 (1994), 789–802 | DOI | MR

[6] M. Coz, Ch. Coudray, “The Riemann solution and the inverse quantum mechanical problem”, J. Math. Phys., 17:6 (1976), 888–893 | DOI | MR

[7] A. Kostenko, G. Teschl, J. H. Toloza, “Dispersion estimates for spherical Schrödinger equations”, Ann. Inst. Henri Poincaré, 17:11 (2016), 3147–3176 | DOI | MR

[8] S. M. Sitnik, Transmutations and Applications: A Survey, 2010, arXiv: 1012.3741

[9] K. Trimèche, Transmutation Operators and Mean-Periodic Functions Associated with Differential Operators, Math. Rep., 4, no. 1, Harwood Acad. Publ., 1988 | MR

[10] V. V. Kravchenko, S. M. Torba, J. Y. Santana-Bejarano, “Generalized wave polynomials and transmutations related to perturbed Bessel equations”, Math. Methods Appl. Sci., 2018 (to appear) | DOI

[11] V. V. Kravchenko, S. M. Torba, R. Castillo-Pérez, “A Neumann series of Bessel functions representation for solutions of perturbed Bessel equations”, Appl. Anal., 97:5 (2018), 677–704 | DOI

[12] B. M. Levitan, “Razlozhenie po funktsiyam Besselya v ryady i integraly Fure”, UMN, 6:2 (42) (1951), 102–143 | MR | Zbl

[13] S. G. Samko, A. A. Kilbas, O. I. Marichev, Integraly i proizvodnye drobnogo poryadka i ikh prilozheniya, Nauka i tekhnika, Minsk, 1987 | MR | Zbl

[14] I. S. Gradshtein, I. M. Ryzhik, Tablitsy integralov, summ, ryadov i proizvedenii, GIFML, M., 1963 | MR

[15] M. Abramowitz, I. A. Stegun (eds.), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, John Wiley Sons, New York, 1984 | MR

[16] G. Szegö, Orthogonal Polynomials, Amer. Math. Soc., Providence, RI, 1959 | MR

[17] Table of Integral Transforms, Vol. 2. Based, in part, on notes left by Harry Bateman, McGraw-Hill Book Company, New York, 1954 | Zbl

[18] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady. V 3 t. T. 3. Spetsialnye funktsii. Dopolnitelnye glavy, Fizmatlit, M., 2003 | MR | Zbl

[19] R. Castillo-Pérez, V. V. Kravchenko, S. M. Torba, “Spectral parameter power series for perturbed Bessel equations”, Appl. Math. Comput., 220 (2013), 676–694 | MR