Wavelets and Bidemocratic Pairs in Weighted Norm Spaces
Matematičeskie zametki, Tome 104 (2018) no. 4, pp. 527-538

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete characterization of weight functions for which the higher-rank Haar wavelets are greedy bases in weighted $L^{p}$ spaces is given. The proof uses the new concept of a bidemocratic pair for a Banach space and also pairs $(\Phi,\Phi)$, where $\Phi$ is an orthonormal system of bounded functions in the spaces $L^{p}$, $p\ne 2$.
Keywords: orthonormal system, democratic and bidemocratic systems, higher rank Haar system, weighted Lebesgue spaces.
@article{MZM_2018_104_4_a3,
     author = {K. S. Kazarian and A. San Antolin},
     title = {Wavelets and {Bidemocratic} {Pairs} in {Weighted} {Norm} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {527--538},
     publisher = {mathdoc},
     volume = {104},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a3/}
}
TY  - JOUR
AU  - K. S. Kazarian
AU  - A. San Antolin
TI  - Wavelets and Bidemocratic Pairs in Weighted Norm Spaces
JO  - Matematičeskie zametki
PY  - 2018
SP  - 527
EP  - 538
VL  - 104
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a3/
LA  - ru
ID  - MZM_2018_104_4_a3
ER  - 
%0 Journal Article
%A K. S. Kazarian
%A A. San Antolin
%T Wavelets and Bidemocratic Pairs in Weighted Norm Spaces
%J Matematičeskie zametki
%D 2018
%P 527-538
%V 104
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a3/
%G ru
%F MZM_2018_104_4_a3
K. S. Kazarian; A. San Antolin. Wavelets and Bidemocratic Pairs in Weighted Norm Spaces. Matematičeskie zametki, Tome 104 (2018) no. 4, pp. 527-538. http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a3/