Wavelets and Bidemocratic Pairs in Weighted Norm Spaces
Matematičeskie zametki, Tome 104 (2018) no. 4, pp. 527-538.

Voir la notice de l'article provenant de la source Math-Net.Ru

A complete characterization of weight functions for which the higher-rank Haar wavelets are greedy bases in weighted $L^{p}$ spaces is given. The proof uses the new concept of a bidemocratic pair for a Banach space and also pairs $(\Phi,\Phi)$, where $\Phi$ is an orthonormal system of bounded functions in the spaces $L^{p}$, $p\ne 2$.
Keywords: orthonormal system, democratic and bidemocratic systems, higher rank Haar system, weighted Lebesgue spaces.
@article{MZM_2018_104_4_a3,
     author = {K. S. Kazarian and A. San Antolin},
     title = {Wavelets and {Bidemocratic} {Pairs} in {Weighted} {Norm} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {527--538},
     publisher = {mathdoc},
     volume = {104},
     number = {4},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a3/}
}
TY  - JOUR
AU  - K. S. Kazarian
AU  - A. San Antolin
TI  - Wavelets and Bidemocratic Pairs in Weighted Norm Spaces
JO  - Matematičeskie zametki
PY  - 2018
SP  - 527
EP  - 538
VL  - 104
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a3/
LA  - ru
ID  - MZM_2018_104_4_a3
ER  - 
%0 Journal Article
%A K. S. Kazarian
%A A. San Antolin
%T Wavelets and Bidemocratic Pairs in Weighted Norm Spaces
%J Matematičeskie zametki
%D 2018
%P 527-538
%V 104
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a3/
%G ru
%F MZM_2018_104_4_a3
K. S. Kazarian; A. San Antolin. Wavelets and Bidemocratic Pairs in Weighted Norm Spaces. Matematičeskie zametki, Tome 104 (2018) no. 4, pp. 527-538. http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a3/

[1] K. S. Kazarian, S. S. Kazaryan, A. San Antolín, “Wavelets in weighted norm spaces”, Tôhoku Math. J., 70:4 (2018) (to appear)

[2] T. Kopaliani, “Higher rank Haar wavelet bases in spaces $L^{p}_{w}({\mathbb R})$”, Georgian Math. J., 18:3 (2011), 517–532 | MR

[3] E. Kapanadze, “Greediness of higher rank Haar wavelet bases in $L^p_{w}({\mathbb R})$ spaces”, Stud. Univ. Babeş-Bolyai Math., 59:2 (2014), 213–219 | MR

[4] M. Izuki, “The Haar wavelets and the Haar scaling function in weighted $L^{p}$ spaces with $A^{dy,m}_{p}$ weights”, Hokkaido Math. J., 36:2 (2007), 417–444 | DOI | MR

[5] M. Izuki, Y. Sawano, “The Haar wavelet characterization of weighted Herz spaces and greediness of the Haar wavelet basis”, J. Math. Anal. Appl., 362:1 (2010), 140–155 | DOI | MR

[6] S. V. Konyagin, V. N. Temlyakov, “A remark on greedy approximation in Banach spaces”, East. J. Approx., 5:3 (1999), 365–379 | MR

[7] V. N. Temlyakov, “Greedy approximation”, Acta Numer., 17 (2008), 235–409 | DOI | MR

[8] S. J. Dilworth, N. J. Kalton, D. Kutzarova, V. N. Temlyakov, “The thresholding greedy algorithm, greedy bases, and duality”, Constr. Approx., 19:4 (2003), 575–597 | DOI | MR

[9] J.-P. Kahane, Some Random Series of Functions, Cambridge Univ. Press, Cambridge, 1993 | MR

[10] K. S. Kazarian, “On bases and unconditional bases in the spaces $L^p(\mu)$, $1\leqslant p\infty$”, Studia Math., 71:3 (1982), 227–249 | MR

[11] K. Kazarian, V. N. Temlyakov, “Greedy bases in $L^p$ spaces”, Ortogonalnye ryady, teoriya priblizhenii i smezhnye voprosy, Sbornik statei. K 60-letiyu so dnya rozhdeniya akademika Borisa Sergeevicha Kashina, Tr. MIAN, 280, MAIK «Nauka/Interperiodika», M., 2013, 188–197 | DOI | MR | Zbl

[12] S. V. Kozyrev, “Teoriya vspleskov kak $p$-adicheskii spektralnyi analiz”, Izv. RAN. Ser. matem., 66:2 (2002), 149–158 | DOI | MR | Zbl