Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_104_4_a12, author = {J. Mike\v{s} and L. Ryparova and H. Chud\'a}, title = {On the {Theory} of {Rotary} {Mappings}}, journal = {Matemati\v{c}eskie zametki}, pages = {637--640}, publisher = {mathdoc}, volume = {104}, number = {4}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a12/} }
J. Mikeš; L. Ryparova; H. Chudá. On the Theory of Rotary Mappings. Matematičeskie zametki, Tome 104 (2018) no. 4, pp. 637-640. http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a12/
[1] J. Mikeš, E. Stepanova, A. Vanžurová, et al., Differential Geometry of Special Mappings, Palacký Univ., Olomouc, 2015 | MR
[2] N. S. Sinyukov, Geodezicheskie otobrazheniya rimanovykh prostranstv, Nauka, M., 1979 | MR | Zbl
[3] A. Z. Petrov, Gravitatsiya i teoriya otnositelnosti, 4-5, Izd-vo Kazansk. un-ta, Kazan, 1968, 7–21
[4] S. G. Leiko, Matem. zametki, 47:3 (1990), 52–57 | MR | Zbl
[5] J. Mikeš, M. Sochor, E. Stepanova, Filomat, 29:3 (2015), 517–523 | DOI | MR
[6] S. G. Leiko, Gravitatsiya i teoriya otnositelnosti, 26, Izd-vo Kazansk. un-ta, Kazan, 1988, 117–124
[7] S. G. Leiko, Dokl. RAN, 325:4 (1992), 659–663 | MR
[8] S. G. Leiko, Dokl. AN, 344:2 (1995), 162–164 | MR
[9] S. G. Leiko, Izv. vuzov. Matem., 1996, no. 6, 25–32 | MR | Zbl
[10] S. G. Leiko, Matem. fiz., anal., geom., 5:3/4 (1998), 203–211 | MR | Zbl
[11] A. V. Vinnik, S. G. Leiko, Izv. vuzov. Matem., 2000, no. 7, 3–5 | MR | Zbl
[12] S. G. Leiko, Yu. S. Fedchenko, Ukr. matem. zhurn., 55:12 (2003), 1697–1703 | MR
[13] S. G. Leiko, Izv. vuzov. Matem., 2005, no. 5, 49–55 | MR | Zbl
[14] H. Chudá, J. Mikeš, M. Sochor, “Rotary diffeomorphism onto manifolds with affine connection”, Geometry, Integrability and Quantization XVIII, Bulgar. Acad. Sci., Sofia, 2017, 130–137 | MR
[15] K. Yano, Proc. Imp. Acad. Tokyo, 20 (1944), 340–345 | DOI | MR