On Volterra Three-Point Problems for the Sturm–Liouville Operator Related to Potential Symmetry
Matematičeskie zametki, Tome 104 (2018) no. 4, pp. 632-636
Cet article a éte moissonné depuis la source Math-Net.Ru
Keywords:
Sturm–Liouville operator, three-point problems, Volterra property, symmetry of the potential.
@article{MZM_2018_104_4_a11,
author = {S. A. Dzhumabaev and D. B. Nurakhmetov},
title = {On {Volterra} {Three-Point} {Problems} for the {Sturm{\textendash}Liouville} {Operator} {Related} to {Potential} {Symmetry}},
journal = {Matemati\v{c}eskie zametki},
pages = {632--636},
year = {2018},
volume = {104},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a11/}
}
TY - JOUR AU - S. A. Dzhumabaev AU - D. B. Nurakhmetov TI - On Volterra Three-Point Problems for the Sturm–Liouville Operator Related to Potential Symmetry JO - Matematičeskie zametki PY - 2018 SP - 632 EP - 636 VL - 104 IS - 4 UR - http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a11/ LA - ru ID - MZM_2018_104_4_a11 ER -
S. A. Dzhumabaev; D. B. Nurakhmetov. On Volterra Three-Point Problems for the Sturm–Liouville Operator Related to Potential Symmetry. Matematičeskie zametki, Tome 104 (2018) no. 4, pp. 632-636. http://geodesic.mathdoc.fr/item/MZM_2018_104_4_a11/
[1] N. Danford, Dzh. Shvarts, Lineinye operatory. T. 2. Spektralnaya teoriya. Samosopryazhennye operatory v gilbertovom prostranstve, IL, M., 1966 | MR | Zbl
[2] B. N. Biyarov, S. A. Dzhumabaev, Matem. zametki, 56:1 (1994), 143–146 | MR | Zbl
[3] A. A. Dezin, Matem. zametki, 37:2 (1985), 249–256 | MR | Zbl
[4] B. N. Biyarov, O spektralnykh svoistvakh korrektnykh suzhenii i rasshirenii odnogo klassa differentsialnykh operatorov, Dis. $\dots$ kand. fiz.-matem. nauk, Alma-Ata, 1989