Embedding Theorems for General Multianisotropic Spaces
Matematičeskie zametki, Tome 104 (2018) no. 3, pp. 422-438

Voir la notice de l'article provenant de la source Math-Net.Ru

An integral representation and embedding theorems for functions in multianisotropic Sobolev spaces are proved. Unlike in previous works, the general case where the characteristic Newton polyhedron in $\mathbb{R}^n$ has an arbitrary number of vertices is considered.
Keywords: embedding theorems, multianisotropic space, completely regular polyhedron, integral representation.
@article{MZM_2018_104_3_a7,
     author = {G. A. Karapetyan and M. K. Arakelyan},
     title = {Embedding {Theorems} for {General} {Multianisotropic} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {422--438},
     publisher = {mathdoc},
     volume = {104},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a7/}
}
TY  - JOUR
AU  - G. A. Karapetyan
AU  - M. K. Arakelyan
TI  - Embedding Theorems for General Multianisotropic Spaces
JO  - Matematičeskie zametki
PY  - 2018
SP  - 422
EP  - 438
VL  - 104
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a7/
LA  - ru
ID  - MZM_2018_104_3_a7
ER  - 
%0 Journal Article
%A G. A. Karapetyan
%A M. K. Arakelyan
%T Embedding Theorems for General Multianisotropic Spaces
%J Matematičeskie zametki
%D 2018
%P 422-438
%V 104
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a7/
%G ru
%F MZM_2018_104_3_a7
G. A. Karapetyan; M. K. Arakelyan. Embedding Theorems for General Multianisotropic Spaces. Matematičeskie zametki, Tome 104 (2018) no. 3, pp. 422-438. http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a7/