Embedding Theorems for General Multianisotropic Spaces
Matematičeskie zametki, Tome 104 (2018) no. 3, pp. 422-438 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

An integral representation and embedding theorems for functions in multianisotropic Sobolev spaces are proved. Unlike in previous works, the general case where the characteristic Newton polyhedron in $\mathbb{R}^n$ has an arbitrary number of vertices is considered.
Keywords: embedding theorems, multianisotropic space, completely regular polyhedron, integral representation.
@article{MZM_2018_104_3_a7,
     author = {G. A. Karapetyan and M. K. Arakelyan},
     title = {Embedding {Theorems} for {General} {Multianisotropic} {Spaces}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {422--438},
     year = {2018},
     volume = {104},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a7/}
}
TY  - JOUR
AU  - G. A. Karapetyan
AU  - M. K. Arakelyan
TI  - Embedding Theorems for General Multianisotropic Spaces
JO  - Matematičeskie zametki
PY  - 2018
SP  - 422
EP  - 438
VL  - 104
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a7/
LA  - ru
ID  - MZM_2018_104_3_a7
ER  - 
%0 Journal Article
%A G. A. Karapetyan
%A M. K. Arakelyan
%T Embedding Theorems for General Multianisotropic Spaces
%J Matematičeskie zametki
%D 2018
%P 422-438
%V 104
%N 3
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a7/
%G ru
%F MZM_2018_104_3_a7
G. A. Karapetyan; M. K. Arakelyan. Embedding Theorems for General Multianisotropic Spaces. Matematičeskie zametki, Tome 104 (2018) no. 3, pp. 422-438. http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a7/

[1] G. A. Karapetyan, “Integralnoe predstavlenie i teoremy vlozheniya dlya multianizotropnykh prostranstv v ploskosti s odnoi vershinoi anizotropnosti”, Izv. NAN Armenii. Matem., 51:6 (2016), 23–42 | MR | Zbl

[2] G. A. Karapetyan, “Integralnoe predstavlenie i teoremy vlozheniya dlya multianizotropnykh prostranstv v ploskosti s proizvolnymi vershinami anizotropnosti”, Izv. NAN Armenii. Matem., 52:6 (2017), 12–24 | Zbl

[3] G. A. Karapetyan, “Integral representation of functions and embedding theorems for multianisotropic spaces in the three-dimensional case”, Eurasian Math. J., 7:2 (2016), 19–37 | MR

[4] G. A. Karapetyan, “Integralnoe predstavlenie i teoremy vlozheniya dlya $n$-mernykh multianizotropnykh prostranstv s odnoi vershinoi anizotropnosti”, Sib. matem. zhurn., 58:3 (2017), 573–590 | DOI | Zbl

[5] S. L. Sobolev, “Ob odnoi teoreme funktsionalnogo analiza”, Matem. sb., 4 (46):3 (1938), 471–497 | Zbl

[6] S. L. Sobolev, Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR | Zbl

[7] S. M. Nikolskii, “Ob odnoi zadache S. L. Soboleva”, Sib. matem. zhurn., 3:6 (1962), 845–851 | MR

[8] K. T. Smith, “Inequalities for formally positive integro-differential forms”, Bull. Amer. Math. Soc., 67 (1961), 368–370 | DOI | MR | Zbl

[9] V. P. Ilin, “Integralnye predstavleniya differentsiruemykh funktsii i ikh primenenie k voprosam prodolzheniya funktsii klassov $W^l_p(G)$”, Sib. matem. zhurn., 8:3 (1967), 573–586 | MR | Zbl

[10] O. V. Besov, “O koertsitivnosti v neizotropnom prostranstve S. L. Soboleva”, Matem. sb., 73 (115):4 (1967), 585–599 | MR | Zbl

[11] Yu. G. Reshëtnyak, “Nekotorye integralnye predstavleniya differentsiruemykh funktsii”, Sib. matem. zhurn., 12:2 (1971), 420–432 | MR | Zbl

[12] O. V. Besov, V. P. Ilin, S. M. Nikolskii, Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR | Zbl

[13] L. Hormander, “On the theory of general partial differential operators”, Acta. Math., 94 (1975), 161–248 | DOI | MR

[14] S. M. Nikolskii, “Ob ustoichivykh granichnykh znacheniyakh differentsiruemoi funktsii mnogikh peremennykh”, Matem. sb., 61 (103):2 (1963), 224–252 | MR | Zbl

[15] S. V. Uspenskii, B. N. Chistyakov, “O vykhode na polinom pri stremlenii $|x|\to\infty$ reshenii odnogo klassa psevdodifferentsialnykh uravnenii”, Teoriya kubaturnykh formul i prilozheniya funktsionalnogo analiza k zadacham matematicheskoi fiziki, Tr. seminara S. L. Soboleva, 1, Novosibirsk, 1979, 136–153 | MR

[16] G. A. Karapetyan, “O stabilizatsii v beskonechnosti k polinomu reshenii odnogo klassa regulyarnykh uravnenii”, Issledovaniya po teorii differentsiruemykh funktsii mnogikh peremennykh i ee prilozheniyam. Chast 13, Tr. MIAN SSSR, 187, Nauka, M., 1989, 116–129 | MR | Zbl

[17] C. Caratheodory, “Über den variabilitätsbereich der fourier'schen konstanten von positiven harmonischen funktionen”, Rend. Circ. Mat. Palermo, 32 (1911), 193–217 | DOI | Zbl