Defect Numbers of the Dirichlet Problem for a Properly Elliptic Sixth-Order Equation
Matematičeskie zametki, Tome 104 (2018) no. 3, pp. 345-355

Voir la notice de l'article provenant de la source Math-Net.Ru

The Dirichlet problem for a class of properly elliptic sixth-order equations in the unit disk is considered. Formulas for determining the defect numbers of this problem are obtained. Linearly independent solutions of the homogeneous problem and conditions for the solvability of the inhomogeneous problem are given explicitly.
Keywords: properly elliptic equations, boundary value problems, Dirichlet problem, defect numbers.
@article{MZM_2018_104_3_a2,
     author = {A. O. Babayan and S. O. Abelyan},
     title = {Defect {Numbers} of the {Dirichlet} {Problem} for a {Properly} {Elliptic} {Sixth-Order} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {345--355},
     publisher = {mathdoc},
     volume = {104},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a2/}
}
TY  - JOUR
AU  - A. O. Babayan
AU  - S. O. Abelyan
TI  - Defect Numbers of the Dirichlet Problem for a Properly Elliptic Sixth-Order Equation
JO  - Matematičeskie zametki
PY  - 2018
SP  - 345
EP  - 355
VL  - 104
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a2/
LA  - ru
ID  - MZM_2018_104_3_a2
ER  - 
%0 Journal Article
%A A. O. Babayan
%A S. O. Abelyan
%T Defect Numbers of the Dirichlet Problem for a Properly Elliptic Sixth-Order Equation
%J Matematičeskie zametki
%D 2018
%P 345-355
%V 104
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a2/
%G ru
%F MZM_2018_104_3_a2
A. O. Babayan; S. O. Abelyan. Defect Numbers of the Dirichlet Problem for a Properly Elliptic Sixth-Order Equation. Matematičeskie zametki, Tome 104 (2018) no. 3, pp. 345-355. http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a2/