Defect Numbers of the Dirichlet Problem for a Properly Elliptic Sixth-Order Equation
Matematičeskie zametki, Tome 104 (2018) no. 3, pp. 345-355.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Dirichlet problem for a class of properly elliptic sixth-order equations in the unit disk is considered. Formulas for determining the defect numbers of this problem are obtained. Linearly independent solutions of the homogeneous problem and conditions for the solvability of the inhomogeneous problem are given explicitly.
Keywords: properly elliptic equations, boundary value problems, Dirichlet problem, defect numbers.
@article{MZM_2018_104_3_a2,
     author = {A. O. Babayan and S. O. Abelyan},
     title = {Defect {Numbers} of the {Dirichlet} {Problem} for a {Properly} {Elliptic} {Sixth-Order} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {345--355},
     publisher = {mathdoc},
     volume = {104},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a2/}
}
TY  - JOUR
AU  - A. O. Babayan
AU  - S. O. Abelyan
TI  - Defect Numbers of the Dirichlet Problem for a Properly Elliptic Sixth-Order Equation
JO  - Matematičeskie zametki
PY  - 2018
SP  - 345
EP  - 355
VL  - 104
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a2/
LA  - ru
ID  - MZM_2018_104_3_a2
ER  - 
%0 Journal Article
%A A. O. Babayan
%A S. O. Abelyan
%T Defect Numbers of the Dirichlet Problem for a Properly Elliptic Sixth-Order Equation
%J Matematičeskie zametki
%D 2018
%P 345-355
%V 104
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a2/
%G ru
%F MZM_2018_104_3_a2
A. O. Babayan; S. O. Abelyan. Defect Numbers of the Dirichlet Problem for a Properly Elliptic Sixth-Order Equation. Matematičeskie zametki, Tome 104 (2018) no. 3, pp. 345-355. http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a2/

[1] J.-L. Lions, E. Magenes, Problemes aux limites non homogénes et applications, V. 1, Travaux et Recherches Mathématiques, 17, Dunod, Paris, 1968 | MR

[2] N. E. Tovmasyan, Non-Regular Differential Equations and Calculations of Electromagnetic Fields, World Sci. Publ., River Edge, NJ, 1998 | MR | Zbl

[3] A. V. Bitsadze, Kraevye zadachi dlya ellipticheskikh uravnenii vtorogo poryadka, Nauka, M., 1966 | MR

[4] N. E. Tovmasyan, “Novye postanovki i issledovaniya pervoi, vtoroi i tretei kraevykh zadach dlya silno svyazannykh ellipticheskikh sistem dvukh differentsialnykh uravnenii vtorogo poryadka s postoyannymi koeffitsientami”, Izv. AN Arm. SSR. Matem., 3:6 (1968), 497–521 | MR

[5] A. O. Babayan, “Ob odnoznachnoi razreshimosti zadachi Dirikhle dlya odnogo klassa ellipticheskikh uravnenii chetvertogo poryadka”, Izv. NAN Armenii. Matem., 34:5 (1999), 1–15 | MR | Zbl

[6] A. H. Babayan, M. H. Mohammadi, “On a Dirichlet Problem for One Properly Elliptic Equation in the Unit Disk”, Dokl. NAN Armenii, 117:3 (2017), 192–200 | MR

[7] A. O. Babayan, “Zadacha Dirikhle dlya uravneniya v chastnykh proizvodnykh chetvertogo poryadka v sluchae dvukratnykh kornei kharakteristicheskogo uravneniya”, Math. Montisnigri, 32 (2015), 66–80 | MR | Zbl

[8] A. O. Babayan, “O zadache Dirikhle dlya nepravilno ellipticheskogo uravneniya chetvertogo poryadka”, Neklassicheskie uravneniya matematicheskoi fiziki., Trudy mezhdunarodnoi konferentsii, posvyaschennoi 100-letiyu so dnya rozhdeniya I. N. Vekua «Differentsialnye uravneniya, teoriya funktsii i prilozheniya», Novosibirsk, 2007, 56–69

[9] N. E. Tovmasyan, “Zadacha Dirikhle dlya pravilno ellipticheskikh uravnenii v mnogosvyaznykh oblastyakh”, Izv. NAN Armenii. Matem., 37:6 (2002), 5–40 | MR | Zbl

[10] A. O. Babayan, “On unique solvability of the Dirichlet problem for one class of properly elliptic equations”, Topics in Analysis and its Applications, NATO Sci. Ser. II Math. Phys. Chem., 147, Kluwer Acad. Publ., Doderecht, 2004, 287–295 | MR

[11] A. O. Babayan, “O zadache Dirikhle dlya pravilno ellipticheskogo uravneniya v edinichnom kruge”, Izv. NAN Armenii. Matem., 38:6 (2003), 39–48 | MR | Zbl

[12] V. P. Burskii, Metody issledovaniya granichnykh zadach dlya obschikh differentsialnykh uravnenii, Naukova Dumka, Kiev, 2002

[13] V. P. Burskii, K. A. Buryachenko, “Nekotorye voprosy netrivialnoi razreshimosti odnorodnoi zadachi Dirikhle dlya lineinykh uravnenii proizvolnogo chetnogo poryadka v kruge”, Matem. zametki, 77:4 (2005), 498–508 | DOI | MR | Zbl

[14] A. H. Babayan, V. A. Babayan, “Defect numbers of the Dirichlet problem for higher order partial differential equations in the unit disc”, Caspian J. Comp. Math. Engineering, 2016, no. 1, 4–19

[15] S. Axler, P. Bourdon, W. Ramey, Harmonic Function Theory, Grad. Texts in Math., 137, Springer, New-York, 2001 | MR | Zbl