Description of the Space of Riesz Potentials of Functions in a Grand Lebesgue Space on~$\mathbb{R}^n$
Matematičeskie zametki, Tome 104 (2018) no. 3, pp. 467-480.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Riesz potentials $I^\alpha f$, $0\alpha\infty$, are considered in the framework of a grand Lebesgue space $L^{p),\theta}_a$, $1$, $\theta>0$, on $\mathbb{R}^n$ with grandizers $a\in L^1(\mathbb{R}^n)$, which are understood in the case $\alpha\ge n/p$ in terms of distributions on test functions in the Lizorkin space. The images under $I^\alpha$ of functions in a subspace of the grand space which satisfy the so-called vanishing condition is studied. Under certain assumptions on the grandizer, this image is described in terms of the convergence of truncated hypersingular integrals of order $\alpha$ in this subspace.
Keywords: Riesz potential, space of Riesz potentials, hypersingular integral, grandizer, Lizorkin space of test functions, identity approximation.
Mots-clés : grand Lebesgue space
@article{MZM_2018_104_3_a11,
     author = {S. M. Umarkhadzhiev},
     title = {Description of the {Space} of {Riesz} {Potentials} of {Functions} in a {Grand} {Lebesgue} {Space} on~$\mathbb{R}^n$},
     journal = {Matemati\v{c}eskie zametki},
     pages = {467--480},
     publisher = {mathdoc},
     volume = {104},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a11/}
}
TY  - JOUR
AU  - S. M. Umarkhadzhiev
TI  - Description of the Space of Riesz Potentials of Functions in a Grand Lebesgue Space on~$\mathbb{R}^n$
JO  - Matematičeskie zametki
PY  - 2018
SP  - 467
EP  - 480
VL  - 104
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a11/
LA  - ru
ID  - MZM_2018_104_3_a11
ER  - 
%0 Journal Article
%A S. M. Umarkhadzhiev
%T Description of the Space of Riesz Potentials of Functions in a Grand Lebesgue Space on~$\mathbb{R}^n$
%J Matematičeskie zametki
%D 2018
%P 467-480
%V 104
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a11/
%G ru
%F MZM_2018_104_3_a11
S. M. Umarkhadzhiev. Description of the Space of Riesz Potentials of Functions in a Grand Lebesgue Space on~$\mathbb{R}^n$. Matematičeskie zametki, Tome 104 (2018) no. 3, pp. 467-480. http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a11/

[1] T. Iwaniec, C. Sbordone, “On the integrability of the Jacobian under minimal hypotheses”, Arch. Rational Mech. Anal., 119:2 (1992), 129–143 | DOI | MR | Zbl

[2] L. Greco, T. Iwaniec, C. Sbordone, “Inverting the $p$-harmonic operator”, Manuscripta Math., 92:2 (1997), 249–258 | DOI | MR | Zbl

[3] A. Fiorenza, B. Gupta, P. Jain, “The maximal theorem in weighted grand Lebesgue spaces”, Studia Math., 188:2 (2008), 123–133 | DOI | MR | Zbl

[4] V. Kokilashvili, “Boundedness criteria for singular integrals in weighted Grand Lebesgue spaces”, J. Math. Anal., 170:1 (2010), 20–33 | MR | Zbl

[5] V. Kokilashvili, A. Meskhi, “A note on the boundedness of the Hilbert transform in weighted grand Lebesgue spaces”, Georgian Math. J., 16:3 (2009), 547–551 | MR | Zbl

[6] A. Meskhi, “Weighted criteria for the Hardy transform under the $B_p$ condition in grand Lebesgue spaces and some applications”, J. Math. Sci. (N.Y.), 178:6 (2011), 622–636 | DOI | MR | Zbl

[7] V. M. Kokilashvili, A. N. Meskhi, “Vesovaya ekstrapolyatsiya v prostranstvakh Ivanetsa–Sbordone. Prilozheniya k integralnym operatoram i teorii priblizhenii”, Funktsionalnye prostranstva, teoriya priblizhenii, smezhnye razdely matematicheskogo analiza, Tr. MIAN, 293, MAIK «Nauka/Interperiodika», M., 2016, 167–192 | DOI | MR

[8] S. G. Samko, S. M. Umarkhadzhiev, “On Iwaniec–Sbordone spaces on sets which may have infinite measure”, Azerb. J. Math., 1:1 (2011), 67–84 | MR | Zbl

[9] S. G. Samko, S. M. Umarkhadzhiev, “On Iwaniec–Sbordone spaces on sets which may have infinite measure: addendum”, Azerb. J. Math., 1:2 (2011), 143–144 | MR | Zbl

[10] S. M. Umarkhadzhiev, “Obobschenie ponyatiya grand-prostranstva Lebega”, Izv. vuzov. Matem., 2014, no. 4, 42–51

[11] S. M. Umarkhadzhiev, “Ogranichennost lineinykh operatorov v vesovykh obobschennykh grand-prostranstvakh Lebega”, Vestn. AN Chechenskoi Respubliki, 19:2 (2013), 5–9

[12] S. M. Umarkhadzhiev, “One-dimensional and multidimensional Hardy operators in grand Lebesgue spaces”, Azerb. J. Math., 7:2 (2017), 132–152 | MR | Zbl

[13] S. G. Samko, S. M. Umarkhadzhiev, “Riesz fractional integrals in grand Lebesgue spaces”, Fract. Calc. Appl. Anal., 19:3 (2016), 608–624 | DOI | MR | Zbl

[14] S. M. Umarkhadzhiev, “Integralnye operatory s odnorodnymi yadrami v grand-prostranstvakh Lebega”, Matem. zametki, 102:5 (2017), 775–788 | DOI | MR | Zbl

[15] S. G. Samko, S. M. Umarkhadzhiev, “On grand Lebesgue spaces on sets of infinite measure”, Math. Nachr., 290:5-6 (2017), 913–919 | DOI | MR | Zbl

[16] S. M. Umarkhadzhiev, “The boundedness of the Riesz potential operator from generalized grand Lebesgue spaces to generalized grand Morrey spaces”, Operator Theory, Operator Algebras and Applications, Oper. Theory Adv. Appl., 242, Birkhäuser, Basel, 2014, 363–373 | MR | Zbl

[17] S. G. Samko, “Hypersingular Integrals and Their Applications”, Anal. Methods Spec. Funct., 5, Taylor Francis, London, 2002 | MR | Zbl

[18] V. Kokilashvili, A. Meskhi, S. Samko, “On the inversion and characterization of the Riesz potentials in the weighted Lebesgue spaces”, Mem. Differential Equations Math. Phys., 29 (2003), 31–45 | MR | Zbl

[19] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality and Oscillatory Integrals, Princeton Math. Ser., 43, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl

[20] S. G. Samko, “On local summability of riesz potentials in the case $\operatorname {Re}\alpha > 0$”, Anal. Math., 25:3 (1999), 205–210 | DOI | MR | Zbl

[21] N. G. Samko, “Weighted Hardy operators in the local generalized vanishing Morrey spaces”, Positivity, 17:3 (2013), 683–706 | DOI | MR | Zbl

[22] V. Kokilashvili, A. Meskhi, H. Rafeiro, S. Samko, “Integral Operators in Non-standard Function Spaces Vol. 1. Variable Exponent Lebesgue and Amalgam Spaces”, Oper. Theory Adv. Appl., 248, Birkhäser, Cham, 2015 | MR

[23] L. Maligranda, “Indices and interpolation”, Dissertationes Math. (Rozprawy Mat.), 234 (1985) | MR | Zbl