Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MZM_2018_104_3_a1, author = {O. G. Avsyankin}, title = {Compactness of {Some} {Operators} of {Convolution} {Type} in {Generalized} {Morrey} {Spaces}}, journal = {Matemati\v{c}eskie zametki}, pages = {336--344}, publisher = {mathdoc}, volume = {104}, number = {3}, year = {2018}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a1/} }
O. G. Avsyankin. Compactness of Some Operators of Convolution Type in Generalized Morrey Spaces. Matematičeskie zametki, Tome 104 (2018) no. 3, pp. 336-344. http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a1/
[1] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. I”, Eurasian Math. J., 3:3 (2012), 11–32 | MR | Zbl
[2] V. I. Burenkov, “Recent progress in studying the boundedness of classical operators of real analysis in general Morrey-type spaces. II”, Eurasian Math. J., 4:1 (2013), 21–45 | MR | Zbl
[3] C. B. Morrey, “On the solutions of quasi-linear elliptic partial differential equations”, Trans. Amer. Math. Soc., 43:1 (1938), 126–166 | DOI | MR | Zbl
[4] V. I. Burenkov, T. V. Tararykova, “Analog neravenstva Yunga dlya svertok funktsii dlya obschikh prostranstv tipa Morri”, Funktsionalnye prostranstva, teoriya priblizhenii, smezhnye razdely matematicheskogo analiza, Tr. MIAN, 293, MAIK «Nauka/Interperiodika», M., 2016, 113–132 | DOI | MR
[5] V. I. Burenkov, T. V. Tararykova, “Young's inequality for convolutions in Morrey-type spaces”, Eurasian Math. J., 7:2 (2016), 92–99 | MR
[6] O. G. Avsyankin, “O kompaktnosti operatorov tipa svertki v prostranstvakh Morri”, Matem. zametki, 102:4 (2017), 483–489 | DOI | MR | Zbl
[7] N. A. Bokaev, V. I. Burenkov, D. T. Matin, “On the pre-compactness of a set in the generalized Morrey spaces”, Proceedings of the International Conference on Analysis and Applied Mathematics, AIP Conf. Proc., 1759, no. 1, 2016, 020108 | DOI
[8] V. I. Burenkov, Kh. V. Guliev, “Neobkhodimye i dostatochnye usloviya ogranichennosti maksimalnogo operatora v lokalnykh prostranstvakh tipa Morri”, Dokl. AN, 391:5 (2003), 591–594 | MR | Zbl
[9] V. I. Burenkov, H. V. Guliyev, “Necessary and sufficient conditions for boundedness of the maximal operator in the local Morrey-type spaces”, Studia Math., 163:2 (2004), 157–176 | DOI | MR | Zbl
[10] V. I. Burenkov, P. Jain, T. V. Tararykova, “On boundedness of the Hardy operator in Morrey-type spaces”, Eurasian Math. J., 2:1 (2011), 52–80 | MR | Zbl
[11] N. K. Karapetiants, S. G. Samko, Equations with Involutive Operators, Birkhäuser Boston, Boston, 2001 | MR | Zbl
[12] Y. Sawano, S. Sharai, “Compact commutators on Morrey spaces with non-doubling measures”, Georgian Math. J., 15:2 (2008), 353–376 | MR | Zbl
[13] Y. Chen, Y. Ding, X. Wang, “Compactness of commutators of Riesz potential on Morrey spaces”, Potential Anal., 30:4 (2009), 301–313 | DOI | MR | Zbl
[14] Y. Chen, Y. Ding, X. Wang, “Compactness of commutators for singular integrals on Morrey spaces”, Canad. J. Math., 64:2 (2012), 257–281 | DOI | MR | Zbl
[15] I. B. Simonenko, “Operatory tipa svertki v konusakh”, Matem. sb., 74 (116):2 (1967), 298–313 | MR | Zbl