Analytic Description of the Spaces Dual to Spaces of Holomorphic Functions of Given Growth on Carath\'eodory Domains
Matematičeskie zametki, Tome 104 (2018) no. 3, pp. 323-335.

Voir la notice de l'article provenant de la source Math-Net.Ru

The spaces dual to spaces of holomorphic functions of given growth on Carathéodory domains are described by using the Cauchy transform of functionals. A pseudoanalytic extension of such transforms to the whole plane is constructed, which makes it possible to remove convexity constrains and consider spaces determined by weights of general form, rather than only by those whose dependence on the distance from a point of the domain to its boundary is one-dimensional.
Keywords: weighted spaces of holomorphic functions, Cauchy transform of functionals, dual spaces.
@article{MZM_2018_104_3_a0,
     author = {A. V. Abanin and T. M. Andreeva},
     title = {Analytic {Description} of the {Spaces} {Dual} to {Spaces} of {Holomorphic} {Functions} of {Given} {Growth} on {Carath\'eodory} {Domains}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {323--335},
     publisher = {mathdoc},
     volume = {104},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a0/}
}
TY  - JOUR
AU  - A. V. Abanin
AU  - T. M. Andreeva
TI  - Analytic Description of the Spaces Dual to Spaces of Holomorphic Functions of Given Growth on Carath\'eodory Domains
JO  - Matematičeskie zametki
PY  - 2018
SP  - 323
EP  - 335
VL  - 104
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a0/
LA  - ru
ID  - MZM_2018_104_3_a0
ER  - 
%0 Journal Article
%A A. V. Abanin
%A T. M. Andreeva
%T Analytic Description of the Spaces Dual to Spaces of Holomorphic Functions of Given Growth on Carath\'eodory Domains
%J Matematičeskie zametki
%D 2018
%P 323-335
%V 104
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a0/
%G ru
%F MZM_2018_104_3_a0
A. V. Abanin; T. M. Andreeva. Analytic Description of the Spaces Dual to Spaces of Holomorphic Functions of Given Growth on Carath\'eodory Domains. Matematičeskie zametki, Tome 104 (2018) no. 3, pp. 323-335. http://geodesic.mathdoc.fr/item/MZM_2018_104_3_a0/

[1] B. A. Derzhavets, “Prostranstva funktsii, analiticheskikh v nekotorykh lineino vypuklykh oblastyakh $C^n$, imeyuschikh zadannoe povedenie vblizi granitsy”, Izv. vuzov. Matem., 1985, no. 6, 10–13 | MR | Zbl

[2] O. V. Gorina, “O razreshimosti uravneniya svertki v odnom klasse Zhevre funktsii, analiticheskikh v nevynukloi oblasti”, Matem. zametki, 52:3 (1992), 35–43 | MR | Zbl

[3] K. V. Trunov, R. S. Yulmukhametov, “Kvazianaliticheskie klassy Karlemana na ogranichennykh oblastyakh”, Algebra i analiz, 20:2 (2008), 178–217 | MR | Zbl

[4] V. A. Varziev, S. N. Melikhov, “O sopryazhennom k prostranstvu analiticheskikh funktsii polinomialnogo rosta vblizi granitsy”, Vladikavk. matem. zhurn., 10:4 (2008), 17–22 | MR | Zbl

[5] A. V. Abanin, Le Hai Khoi, “Cauchy–Fantappiè transformation and mutual dualities between $A^{-\infty}(\Omega)$ and $A^{\infty}(\widetilde\Omega)$ for lineally convex domains”, C. R. Math. Acad. Sci. Paris, 349:21-22 (2011), 1155–1158 | DOI | MR | Zbl

[6] A. V. Abanin, Le Hai Khoi, “Cauchy transformation and mutual dualities between $A^{-\infty}(\Omega)$ and $A^{\infty}(\complement\Omega)$ for Carathéodory domains”, Bull. Belg. Math. Soc. Simon Stevin, 23:1 (2016), 87–102 | MR | Zbl

[7] E. M. Dynkin, “Psevdoanaliticheskoe prodolzhenie gladkikh funktsii. Ravnomernaya shkala”, Matematicheskoe programmirovanie i smezhnye voprosy, Trudy 7-i zimnei shkoly (Drogobych, 1974), Teoriya funktsii i funktsionalnyi analiz, Tsentr. ekonom.-mat. in-t AN SSSR, M., 1976, 40–73

[8] R. Edvards, Funktsionalnyi analiz. Teoriya i prilozheniya, Mir, M., 1969 | MR | Zbl

[9] I. M. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl

[10] L. Khërmander, Vvedenie v teoriyu funktsii neskolkikh kompleksnykh peremennykh, Mir, M., 1968 | MR | Zbl

[11] L. I. Hedberg, “Weighted mean approximation in Carathéodory domains”, Math. Scand., 23 (1968), 113–122 | MR | Zbl

[12] V. V. Zharinov, “Kompaktnye semeistva LVP i prostranstva FS i DFS”, UMN, 34:4 (208) (1979), 97–131 | MR | Zbl