Poisson Total Boundedness of Solutions of Systems of Differential Equations and Lyapunov Vector Functions
Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 243-254.

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce the notions of Poisson total boundedness of solutions, partial Poisson total boundedness of solutions, and partial Poisson total boundedness of solutions with partly controlled initial conditions. We use the Lyapunov vector function method to obtain sufficient conditions for the Poisson total boundedness of solutions, the partial Poisson total boundedness of solutions, and the partial Poisson total boundedness of solutions with partly controlled initial conditions. As a consequence, we obtain sufficient conditions for the above-mentioned kinds of Poisson total boundedness of solutions based on the Lyapunov function method.
Keywords: boundedness of solutions, Poisson total boundedness of solutions, Lyapunov vector function, partial boundedness of solutions, partly controlled initial conditions.
@article{MZM_2018_104_2_a7,
     author = {K. S. Lapin},
     title = {Poisson {Total} {Boundedness} of {Solutions} of {Systems} of {Differential} {Equations} and {Lyapunov} {Vector} {Functions}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {243--254},
     publisher = {mathdoc},
     volume = {104},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a7/}
}
TY  - JOUR
AU  - K. S. Lapin
TI  - Poisson Total Boundedness of Solutions of Systems of Differential Equations and Lyapunov Vector Functions
JO  - Matematičeskie zametki
PY  - 2018
SP  - 243
EP  - 254
VL  - 104
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a7/
LA  - ru
ID  - MZM_2018_104_2_a7
ER  - 
%0 Journal Article
%A K. S. Lapin
%T Poisson Total Boundedness of Solutions of Systems of Differential Equations and Lyapunov Vector Functions
%J Matematičeskie zametki
%D 2018
%P 243-254
%V 104
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a7/
%G ru
%F MZM_2018_104_2_a7
K. S. Lapin. Poisson Total Boundedness of Solutions of Systems of Differential Equations and Lyapunov Vector Functions. Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 243-254. http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a7/

[1] T. Yoshizawa, “Liapunov's function and boundedness of solutions”, Funkcial. Ekvac., 2 (1959), 95–142 | MR | Zbl

[2] V. V. Rumyantsev, A. S. Oziraner, Ustoichivost i stabilizatsiya dvizheniya otnositelno chasti peremennykh, Nauka, M., 1987 | MR | Zbl

[3] K. S. Lapin, “Ogranichennost v predele reshenii sistem differentsialnykh uravnenii po chasti peremennykh s chastichno kontroliruemymi nachalnymi usloviyami”, Differents. uravneniya, 49:10 (2013), 1281–1286 | MR | Zbl

[4] K. S. Lapin, “Ravnomernaya ogranichennost reshenii sistem differentsialnykh uravnenii po chasti peremennykh s chastichno kontroliruemymi nachalnymi usloviyami”, Matem. zametki, 96:3 (2014), 393–404 | DOI | Zbl

[5] K. S. Lapin, “Chastichnaya ravnomernaya ogranichennost reshenii sistem differentsialnykh uravnenii s chastichno kontroliruemymi nachalnymi usloviyami”, Differents. uravneniya, 50:3 (2014), 309–316 | DOI | MR | Zbl

[6] V. M. Matrosov, Metod vektornykh funktsii Lyapunova: analiz dinamicheskikh svoistv nelineinykh sistem, Fizmatlit, M., 2000 | Zbl

[7] K. S. Lapin, “Chastichnaya totalnaya ogranichennost reshenii sistem differentsialnykh uravnenii s chastichno kontroliruemymi nachalnymi usloviyami”, Matem. zametki, 99:2 (2016), 239–247 | DOI | MR | Zbl

[8] K. S. Lapin, “Vektor-funktsii Lyapunova i chastichnaya ogranichennost reshenii s chastichno kontroliruemymi nachalnymi usloviyami”, Differents. uravneniya, 52:5 (2016), 572–578 | DOI | MR | Zbl

[9] V. I. Vorotnikov, Yu. G. Martyshenko, “K teorii chastichnoi ustoichivosti nelineinykh dinamicheskikh sistem”, Izv. RAN. Teoriya i sistemy upravleniya, 2010, no. 5, 23–31 | MR | Zbl

[10] V. I. Vorotnikov, Yu. G. Martyshenko, “K zadacham chastichnoi ustoichivosti dlya sistem s posledeistviem”, Tr. IMM UrO RAN, 19, no. 1, 2013, 49–58 | MR

[11] V. I. Vorotnikov, Yu. G. Martyshenko, “Ob ustoichivosti po chasti peremennykh “chastichnykh” polozhenii ravnovesiya sistem s posledeistviem”, Matem. zametki, 96:4 (2014), 496–503 | DOI | MR | Zbl

[12] V. V. Nemytskii, V. V. Stepanov, Kachestvennaya teoriya differentsialnykh uravnenii, Gostekhizdat, M., 1947 | MR | Zbl

[13] K. Miki, A. Masamichi, S. Shoichi, “On the partial total stability and partially total boundedness of a system of ordinary differential equations”, Res. Rept. Akita Tech. Coll., 20 (1985), 105–109