Application of the Averaging Principle to the Study of the Dynamics of the Delay Logistic Equation
Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 216-230
Voir la notice de l'article provenant de la source Math-Net.Ru
The delay logistic equation with rapidly oscillating coefficients is studied. An averaged equation is constructed, and its dynamics is investigated. Algorithms relating the dynamical modes of the original and averaged equations are developed. It is established that the solutions are particularly sensitive to the choice of functions describing the oscillations of the delay coefficient.
Keywords:
averaging, stability, normal forms, asymptotics.
Mots-clés : bifurcations
Mots-clés : bifurcations
@article{MZM_2018_104_2_a5,
author = {S. A. Kashchenko},
title = {Application of the {Averaging} {Principle} to the {Study} of the {Dynamics} of the {Delay} {Logistic} {Equation}},
journal = {Matemati\v{c}eskie zametki},
pages = {216--230},
publisher = {mathdoc},
volume = {104},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a5/}
}
TY - JOUR AU - S. A. Kashchenko TI - Application of the Averaging Principle to the Study of the Dynamics of the Delay Logistic Equation JO - Matematičeskie zametki PY - 2018 SP - 216 EP - 230 VL - 104 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a5/ LA - ru ID - MZM_2018_104_2_a5 ER -
S. A. Kashchenko. Application of the Averaging Principle to the Study of the Dynamics of the Delay Logistic Equation. Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 216-230. http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a5/