Application of the Averaging Principle to the Study of the Dynamics of the Delay Logistic Equation
Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 216-230.

Voir la notice de l'article provenant de la source Math-Net.Ru

The delay logistic equation with rapidly oscillating coefficients is studied. An averaged equation is constructed, and its dynamics is investigated. Algorithms relating the dynamical modes of the original and averaged equations are developed. It is established that the solutions are particularly sensitive to the choice of functions describing the oscillations of the delay coefficient.
Keywords: averaging, stability, normal forms, asymptotics.
Mots-clés : bifurcations
@article{MZM_2018_104_2_a5,
     author = {S. A. Kashchenko},
     title = {Application of the {Averaging} {Principle} to the {Study} of the {Dynamics} of the {Delay} {Logistic} {Equation}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {216--230},
     publisher = {mathdoc},
     volume = {104},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a5/}
}
TY  - JOUR
AU  - S. A. Kashchenko
TI  - Application of the Averaging Principle to the Study of the Dynamics of the Delay Logistic Equation
JO  - Matematičeskie zametki
PY  - 2018
SP  - 216
EP  - 230
VL  - 104
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a5/
LA  - ru
ID  - MZM_2018_104_2_a5
ER  - 
%0 Journal Article
%A S. A. Kashchenko
%T Application of the Averaging Principle to the Study of the Dynamics of the Delay Logistic Equation
%J Matematičeskie zametki
%D 2018
%P 216-230
%V 104
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a5/
%G ru
%F MZM_2018_104_2_a5
S. A. Kashchenko. Application of the Averaging Principle to the Study of the Dynamics of the Delay Logistic Equation. Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 216-230. http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a5/

[1] N. N. Bogolyubov, Yu. A. Mitropolskii, Asimptoticheskie metody v teorii nelineinykh kolebanii, Nauka, M., 1974 | MR | Zbl

[2] Yu. A. Mitropolskii, Metod usredneniya v nelineinoi mekhanike, Naukova dumka, Kiev, 1971 | MR | Zbl

[3] V. M. Volosov, B. I. Morgunov, Metod osredneniya v teorii nelineinykh kolebatelnykh sistem, Izd-vo Mosk. un-ta, M., 1971

[4] Yu. A. Mitropolskii, Nestatsionarnye protsessy v nelineinykh kolebatelnykh sistemakh, AN USSR, Kiev, 1955 | MR | Zbl

[5] Yu. S. Kolesov, V. S. Kolesov, I. I. Fedik, Avtokolebaniya v sistemakh s raspredelennymi parametrami, Naukova dumka, Kiev, 1979

[6] Yu. S. Kolesov, V. V. Maiorov, “Novyi metod issledovaniya ustoichivosti reshenii lineinykh differentsialnykh uravnenii s blizkimi k postoyannym pochti periodicheskimi koeffitsientami”, Differents. uravneniya, 10:10 (1974), 1778–1788 | MR | Zbl

[7] S. A. Kaschenko, V. V. Maiorov, “Algoritm issledovaniya ustoichivosti reshenii lineinykh differentsialnykh uravnenii s posledeistvie i bystro ostsilliruyuschimi pochti periodicheskimi koeffitsientami”, Issledovaniya po ustoichivosti i teorii kolebanii, YarGU, Yaroslavl, 1977, 70–81

[8] S. A. Kaschenko, “Asimptotika ustanovivshikhsya rezhimov parabolicheskikh uravnenii s bystro ostsilliruyuschimi po vremeni koeffitsientami i peremennoi oblastyu opredeleniya”, Ukr. matem. zhurn., 39:5 (1987), 578–582 | MR | Zbl

[9] S. A. Kaschenko, “Issledovanie ustoichivosti reshenii lineinykh parabolicheskikh uravnenii s blizkimi k postoyannym koeffitsientami i maloi diffuziei”, Trudy seminara im. I. G. Petrovskogo, 15, Iz-vo Mosk. un-ta, M., 1991, 128–155 | MR | Zbl

[10] S. A. Kaschenko, “Dinamika sistem s zapazdyvaniem i bystro ostsilliruyuschimi koeffitsientami”, Differentsialnye uravneniya, 54:1 (2018), 15–29 | Zbl

[11] F. Khartman, Obyknovennye differentsialnye uravneniya, Mir, M., 1970 | MR | Zbl

[12] Dzh. Kheil, Teoriya funktsionalno-differentsialnykh uravnenii, Mir, M., 1984 | MR | Zbl

[13] J. Wu, Theory and Applications of Partial Functional Differential Equations, Springer, New York, 1996 | MR | Zbl

[14] D. Marsden, M. Mak-Kraken, Bifurkatsiya rozhdeniya tsikla i ee prilozheniya, Mir, M., 1980 | MR | Zbl

[15] A. D. Bryuno, Lokalnyi metod nelineinogo analiza differentsialnykh uravnenii, Nauka, M., 1979 | MR | Zbl

[16] S. A. Kaschenko, “Asimptotika reshenii obobschennogo uravneniya Khatchinsona”, Model. i analiz inform. sistem, 19:3 (2012), 32–61

[17] S. A. Kaschenko, “Asimptotika reshenii obobschennogo uravneniya Khatchinsona”, Model. i analiz inform. sistem, 19:3 (2012), 32–61

[18] S. A. Kaschenko, “Dinamika logisticheskogo uravneniya s dvumya zapazdyvaniyami”, Differents. uravneniya, 52:5 (2016), 561–571 | DOI | MR | Zbl

[19] N. D. Bykova, “Vychislenie lyapunovskoi velichiny dlya logisticheskogo uravneniya s bystro ostsilliruyuschim zapazdyvaniem”, Model. i analiz inform. sistem, 21:3 (2014), 121–128

[20] E. V. Grigorieva, S. A. Kashchenko, “Stability of equilibrium state in a laser with rapidly oscillating delay feedback”, Phys. D, 291 (2015), 1–7 | DOI | MR

[21] S. A. Kaschenko, “Bifurkatsii v okrestnosti tsikla pri malykh vozmuscheniyakh s bolshim zapazdyvaniem”, Zh. vychisl. matem. i matem. fiz., 40:5 (2000), 693–702 | MR | Zbl

[22] S. A. Kaschenko, “O normalizatsii v okrestnosti tsikla sistem parabolicheskikh uravnenii s maloi diffuziei”, Ukr. matem. zhurn., 43:9 (1991), 1155–1161 | MR | Zbl

[23] S. A. Kashchenko, “Bifurcational features in systems of nonlinear parabolic equations with weak diffusion”, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 15:11 (2005), 3595–3606 | DOI | MR