On Locally Bounded Solutions of the Cauchy Problem for a First-Order Quasilinear Equation with Power Flux Function
Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 191-199
Voir la notice de l'article provenant de la source Math-Net.Ru
For a first-order quasilinear equation with power flux function, a generalized entropy solution of the Cauchy problem with exponential initial condition is constructed. An example of a nonunique generalized entropy solution in the class of locally bounded functions of the Cauchy problem with zero initial condition is given.
Keywords:
first-order quasilinear equation, generalized entropy solution, conservation law.
@article{MZM_2018_104_2_a3,
author = {L. V. Gargyants},
title = {On {Locally} {Bounded} {Solutions} of the {Cauchy} {Problem} for a {First-Order} {Quasilinear} {Equation} with {Power} {Flux} {Function}},
journal = {Matemati\v{c}eskie zametki},
pages = {191--199},
publisher = {mathdoc},
volume = {104},
number = {2},
year = {2018},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a3/}
}
TY - JOUR AU - L. V. Gargyants TI - On Locally Bounded Solutions of the Cauchy Problem for a First-Order Quasilinear Equation with Power Flux Function JO - Matematičeskie zametki PY - 2018 SP - 191 EP - 199 VL - 104 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a3/ LA - ru ID - MZM_2018_104_2_a3 ER -
%0 Journal Article %A L. V. Gargyants %T On Locally Bounded Solutions of the Cauchy Problem for a First-Order Quasilinear Equation with Power Flux Function %J Matematičeskie zametki %D 2018 %P 191-199 %V 104 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a3/ %G ru %F MZM_2018_104_2_a3
L. V. Gargyants. On Locally Bounded Solutions of the Cauchy Problem for a First-Order Quasilinear Equation with Power Flux Function. Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 191-199. http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a3/