On Locally Bounded Solutions of the Cauchy Problem for a First-Order Quasilinear Equation with Power Flux Function
Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 191-199.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a first-order quasilinear equation with power flux function, a generalized entropy solution of the Cauchy problem with exponential initial condition is constructed. An example of a nonunique generalized entropy solution in the class of locally bounded functions of the Cauchy problem with zero initial condition is given.
Keywords: first-order quasilinear equation, generalized entropy solution, conservation law.
@article{MZM_2018_104_2_a3,
     author = {L. V. Gargyants},
     title = {On {Locally} {Bounded} {Solutions} of the {Cauchy} {Problem} for a {First-Order} {Quasilinear} {Equation} with {Power} {Flux} {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {191--199},
     publisher = {mathdoc},
     volume = {104},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a3/}
}
TY  - JOUR
AU  - L. V. Gargyants
TI  - On Locally Bounded Solutions of the Cauchy Problem for a First-Order Quasilinear Equation with Power Flux Function
JO  - Matematičeskie zametki
PY  - 2018
SP  - 191
EP  - 199
VL  - 104
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a3/
LA  - ru
ID  - MZM_2018_104_2_a3
ER  - 
%0 Journal Article
%A L. V. Gargyants
%T On Locally Bounded Solutions of the Cauchy Problem for a First-Order Quasilinear Equation with Power Flux Function
%J Matematičeskie zametki
%D 2018
%P 191-199
%V 104
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a3/
%G ru
%F MZM_2018_104_2_a3
L. V. Gargyants. On Locally Bounded Solutions of the Cauchy Problem for a First-Order Quasilinear Equation with Power Flux Function. Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 191-199. http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a3/

[1] S. N. Kruzhkov, “Obobschennye resheniya zadachi Koshi v tselom dlya nelineinykh uravnenii pervogo poryadka”, Dokl. AN SSSR, 187:1 (1969), 29–32 | MR | Zbl

[2] S. N. Kruzhkov, “Kvazilineinye uravneniya pervogo poryadka so mnogimi nezavisimymi peremennymi”, Matem. sb., 81 (123):2 (1970), 228–255 | MR | Zbl

[3] E. Yu. Panov, “O klassakh korrektnosti lokalno ogranichennykh obobschennykh entropiinykh reshenii zadachi Koshi dlya kvazilineinykh uravnenii pervogo poryadka”, Fundament. i prikl. matem., 12:5 (2006), 175–188 | MR | Zbl

[4] L. V. Gargyants, “Lokalno ogranichennye resheniya odnomernykh zakonov sokhraneniya”, Differents. uravneniya, 52:4 (2016), 481–489 | DOI | MR | Zbl

[5] A. Yu. Goritsky, E. Yu Panov, “Example of nonuniqueness of entropy solutions in the class of locally bounded functions”, Russ. J. Math. Phys., 6:4 (1999), 492–494 | MR | Zbl

[6] A. Yu. Goritskii, S. N. Kruzhkov, G. A Chechkin, Uravneniya s chastnymi proizvodnymi pervogo poryadka, Uchebnoe posobie, Izd-vo Tsentra prikladnykh issledovanii pri mekhaniko-matematicheskom fakultete MGU, M., 1999