On Locally Bounded Solutions of the Cauchy Problem for a First-Order Quasilinear Equation with Power Flux Function
Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 191-199

Voir la notice de l'article provenant de la source Math-Net.Ru

For a first-order quasilinear equation with power flux function, a generalized entropy solution of the Cauchy problem with exponential initial condition is constructed. An example of a nonunique generalized entropy solution in the class of locally bounded functions of the Cauchy problem with zero initial condition is given.
Keywords: first-order quasilinear equation, generalized entropy solution, conservation law.
@article{MZM_2018_104_2_a3,
     author = {L. V. Gargyants},
     title = {On {Locally} {Bounded} {Solutions} of the {Cauchy} {Problem} for a {First-Order} {Quasilinear} {Equation} with {Power} {Flux} {Function}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {191--199},
     publisher = {mathdoc},
     volume = {104},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a3/}
}
TY  - JOUR
AU  - L. V. Gargyants
TI  - On Locally Bounded Solutions of the Cauchy Problem for a First-Order Quasilinear Equation with Power Flux Function
JO  - Matematičeskie zametki
PY  - 2018
SP  - 191
EP  - 199
VL  - 104
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a3/
LA  - ru
ID  - MZM_2018_104_2_a3
ER  - 
%0 Journal Article
%A L. V. Gargyants
%T On Locally Bounded Solutions of the Cauchy Problem for a First-Order Quasilinear Equation with Power Flux Function
%J Matematičeskie zametki
%D 2018
%P 191-199
%V 104
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a3/
%G ru
%F MZM_2018_104_2_a3
L. V. Gargyants. On Locally Bounded Solutions of the Cauchy Problem for a First-Order Quasilinear Equation with Power Flux Function. Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 191-199. http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a3/