Universal Approach to the Arithmetics of Formal Groups
Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 183-190.

Voir la notice de l'article provenant de la source Math-Net.Ru

An approach to the construction of a basis of the Lazard ring by using the coefficients of a universal isogeny is described and examples of the application of this approach are given.
Keywords: Lazard ring, formal group laws.
@article{MZM_2018_104_2_a2,
     author = {S. V. Vostokov and I. L. Klimovitskii and P. N. Pital},
     title = {Universal {Approach} to the {Arithmetics} of {Formal} {Groups}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {183--190},
     publisher = {mathdoc},
     volume = {104},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a2/}
}
TY  - JOUR
AU  - S. V. Vostokov
AU  - I. L. Klimovitskii
AU  - P. N. Pital
TI  - Universal Approach to the Arithmetics of Formal Groups
JO  - Matematičeskie zametki
PY  - 2018
SP  - 183
EP  - 190
VL  - 104
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a2/
LA  - ru
ID  - MZM_2018_104_2_a2
ER  - 
%0 Journal Article
%A S. V. Vostokov
%A I. L. Klimovitskii
%A P. N. Pital
%T Universal Approach to the Arithmetics of Formal Groups
%J Matematičeskie zametki
%D 2018
%P 183-190
%V 104
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a2/
%G ru
%F MZM_2018_104_2_a2
S. V. Vostokov; I. L. Klimovitskii; P. N. Pital. Universal Approach to the Arithmetics of Formal Groups. Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 183-190. http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a2/

[1] M. Lazard, “Sur les groupes de Lie formels à un paramètre”, Bull. Soc. Math. France, 83 (1955), 251 – 274 | DOI | MR | Zbl

[2] M. Hazewinkel, Formal Groups and Applications, Acad. Press, New York, 1978 | MR | Zbl

[3] V. A. Kolyvagin, “Formalnye gruppy i simvol normennogo vycheta”, Izv. AN SSSR. Ser. matem., 43:5 (1979), 1054–1120 | MR | Zbl

[4] J. Lubin, “One-parameter formal Lie groups over p-adic integer rings”, Ann. of Math. (2), 80 (1964), 464–484 | DOI | MR | Zbl