Invariant Estimates of Two-Dimensional Oscillatory Integrals
Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 289-300

Voir la notice de l'article provenant de la source Math-Net.Ru

Invariant estimates of oscillatory integrals with polynomial phase are studied. The main result is a theorem on uniform invariant estimates of trigonometric integrals. The obtained estimates improve Popov's well-known results on invariant estimates of trigonometric integrals in the case where the phase function is a third-degree polynomial.
Keywords: oscillatory integral, phase function
Mots-clés : amplitude, discriminant.
@article{MZM_2018_104_2_a11,
     author = {A. R. Safarov},
     title = {Invariant {Estimates} of {Two-Dimensional} {Oscillatory} {Integrals}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {289--300},
     publisher = {mathdoc},
     volume = {104},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a11/}
}
TY  - JOUR
AU  - A. R. Safarov
TI  - Invariant Estimates of Two-Dimensional Oscillatory Integrals
JO  - Matematičeskie zametki
PY  - 2018
SP  - 289
EP  - 300
VL  - 104
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a11/
LA  - ru
ID  - MZM_2018_104_2_a11
ER  - 
%0 Journal Article
%A A. R. Safarov
%T Invariant Estimates of Two-Dimensional Oscillatory Integrals
%J Matematičeskie zametki
%D 2018
%P 289-300
%V 104
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a11/
%G ru
%F MZM_2018_104_2_a11
A. R. Safarov. Invariant Estimates of Two-Dimensional Oscillatory Integrals. Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 289-300. http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a11/