Invariant Estimates of Two-Dimensional Oscillatory Integrals
Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 289-300.

Voir la notice de l'article provenant de la source Math-Net.Ru

Invariant estimates of oscillatory integrals with polynomial phase are studied. The main result is a theorem on uniform invariant estimates of trigonometric integrals. The obtained estimates improve Popov's well-known results on invariant estimates of trigonometric integrals in the case where the phase function is a third-degree polynomial.
Keywords: oscillatory integral, phase function
Mots-clés : amplitude, discriminant.
@article{MZM_2018_104_2_a11,
     author = {A. R. Safarov},
     title = {Invariant {Estimates} of {Two-Dimensional} {Oscillatory} {Integrals}},
     journal = {Matemati\v{c}eskie zametki},
     pages = {289--300},
     publisher = {mathdoc},
     volume = {104},
     number = {2},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a11/}
}
TY  - JOUR
AU  - A. R. Safarov
TI  - Invariant Estimates of Two-Dimensional Oscillatory Integrals
JO  - Matematičeskie zametki
PY  - 2018
SP  - 289
EP  - 300
VL  - 104
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a11/
LA  - ru
ID  - MZM_2018_104_2_a11
ER  - 
%0 Journal Article
%A A. R. Safarov
%T Invariant Estimates of Two-Dimensional Oscillatory Integrals
%J Matematičeskie zametki
%D 2018
%P 289-300
%V 104
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a11/
%G ru
%F MZM_2018_104_2_a11
A. R. Safarov. Invariant Estimates of Two-Dimensional Oscillatory Integrals. Matematičeskie zametki, Tome 104 (2018) no. 2, pp. 289-300. http://geodesic.mathdoc.fr/item/MZM_2018_104_2_a11/

[1] I. A. Ikromov, “Invariantnye otsenki dvumernykh trigonometricheskikh integralov”, Matem. sb., 180:8 (1989), 1017–1032 | MR | Zbl

[2] G. I. Arkhipov, A. A. Karatsuba, V. N. Chubarikov, “Trigonometricheskie integraly”, Izv. AN SSSR. Ser. matem., 43:5 (1979), 971–1003 | MR | Zbl

[3] I. M. Vinogradov, Metod trigonometricheskikh summ v teorii chisel, Nauka, M., 1971 | MR | Zbl

[4] D. A. Popov, “Otsenki s konstantami dlya nekotorykh klassov ostsilliruyuschikh integralov”, UMN, 52:1 (313) (1997), 77–148 | DOI | MR | Zbl

[5] M. Ben-Artzi, H. Koch, J.-C. Saut, “Dispersion estimates for third order equations in two dimensions”, Comm. Partial Differential Equations, 28:11 (2003), 1943–1974 | MR | Zbl

[6] D. A. Popov, “Zamechaniya o ravnomernykh sostavnykh otsenkakh ostsilliruyuschikh integralov s prostymi osobennostyami”, Izv. RAN. Ser. matem., 72:4 (2008), 173–196 | DOI | MR | Zbl

[7] I. M. Stein, Singulyarnye integraly i differentsialnye svoistva funktsii, Mir, M., 1973 | MR | Zbl

[8] J. J. Duistermaat, “Oscillatory integrals, Lagrange immersions and unfolding of singularities”, Comm. Pure. Appl. Math., 27:2 (1974), 207–281 | DOI | MR | Zbl

[9] A. R. Safarov, “O summiruemosti dvukratnykh ostsillyatornykh integralov s polinomialnoi fazoi tretei stepeni”, Uzbekskii matem. zhurn., 4 (2015), 108–117

[10] M. V. Fedoryuk, Metod perevala, Nauka, M., 1977 | MR | Zbl

[11] E. M. Stein, Harmonic Analysis. Real-Valued Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, NJ, 1993 | MR | Zbl

[12] G. B. Gurevich, Osnovy teorii algebraicheskikh invariantov, OGIZ, M., 1948 | MR

[13] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii. Tom 1. Klassifikatsiya kriticheskikh tochek, kaustik i volnovykh frontov, Nauka, M., 1982 ; В. И. Арнольд, А. Н. Варченко, С. М. Гусейн-Заде, Особенности дифференцируемых отображений. Том 2. Монодромия и асимптотики интегралов, Наука, М., 1984 | MR | MR